To solve the expression [tex]\(\sqrt{3} \times \sqrt{4}\)[/tex], let's break it down step by step:
Step 1: Determine the value of [tex]\(\sqrt{3}\)[/tex].
The square root of 3, denoted as [tex]\(\sqrt{3}\)[/tex], is approximately [tex]\(1.7320508075688772\)[/tex].
Step 2: Determine the value of [tex]\(\sqrt{4}\)[/tex].
The square root of 4, denoted as [tex]\(\sqrt{4}\)[/tex], is exactly [tex]\(2.0\)[/tex] because [tex]\(2 \times 2 = 4\)[/tex].
Step 3: Multiply the two square roots together.
We need to calculate:
[tex]\[
\sqrt{3} \times \sqrt{4} = 1.7320508075688772 \times 2.0
\][/tex]
Step 4: Perform the multiplication.
When we multiply these two values, we get:
[tex]\[
1.7320508075688772 \times 2.0 = 3.4641016151377544
\][/tex]
Hence, [tex]\(\sqrt{3} \times \sqrt{4} = 3.4641016151377544\)[/tex].