Solve the following proportion for [tex]x[/tex]:

[tex]\[ \frac{x+4}{3} = \frac{x+2}{4} \][/tex]

A. [tex]\(-10\)[/tex]
B. 22
C. [tex]\(-22\)[/tex]
D. 10



Answer :

To solve the given proportion for [tex]\( x \)[/tex]:

[tex]\[ \frac{x+4}{3} = \frac{x+2}{4} \][/tex]

we need to eliminate the denominators by cross-multiplying. This method gives us:

[tex]\[ 4 \cdot (x + 4) = 3 \cdot (x + 2) \][/tex]

Next, we expand both sides:

[tex]\[ 4x + 16 = 3x + 6 \][/tex]

To isolate [tex]\( x \)[/tex], we need to get all terms involving [tex]\( x \)[/tex] on one side and the constants on the other side. We start by subtracting [tex]\( 3x \)[/tex] from both sides:

[tex]\[ 4x - 3x + 16 = 3x - 3x + 6 \][/tex]

This simplifies to:

[tex]\[ x + 16 = 6 \][/tex]

Next, we subtract 16 from both sides to solve for [tex]\( x \)[/tex]:

[tex]\[ x + 16 - 16 = 6 - 16 \][/tex]

This simplifies to:

[tex]\[ x = -10 \][/tex]

So, the solution to the proportion is:

[tex]\[ x = -10 \][/tex]