Use the inverse relationship to complete the expression.

If [tex][tex]$i=\sqrt{-1}$[/tex][/tex], then [tex][tex]$i^2=$[/tex][/tex] [tex]$\square$[/tex]



Answer :

To solve the expression using the inverse relationship, let’s consider the given information that [tex]\( i = \sqrt{-1} \)[/tex].

1. Understand the definition of [tex]\( i \)[/tex]: The imaginary unit [tex]\( i \)[/tex] is defined as [tex]\( i = \sqrt{-1} \)[/tex]. This is a fundamental concept in complex numbers.

2. Express [tex]\( i^2 \)[/tex]: We need to find the value of [tex]\( i^2 \)[/tex].

3. Square [tex]\( i \)[/tex]:
[tex]\[ i^2 = (\sqrt{-1})^2 \][/tex]

4. Simplify the expression: When you square [tex]\( \sqrt{-1} \)[/tex], the square and the square root cancel each other out, leaving you with:
[tex]\[ i^2 = -1 \][/tex]

Thus, the value of [tex]\( i^2 \)[/tex] is [tex]\(-1\)[/tex]. Therefore, [tex]\( i^2 = \boxed{-1} \)[/tex].