Answer :
Sure! Let's solve each of these equations step-by-step:
### First Equation:
[tex]\[ 3 \times 5 + \left(\frac{18}{6}\right\) + 2 \times 3 \][/tex]
1. Calculate [tex]\( 3 \times 5 \)[/tex]:
[tex]\[ 3 \times 5 = 15 \][/tex]
2. Calculate [tex]\( \left(\frac{18}{6}\right\)[/tex]:
[tex]\[ \frac{18}{6} = 3 \][/tex]
3. Calculate [tex]\( 2 \times 3 \: \[ 2 \times 3 = 6 \] 4. Add them together: \[ 15 + 3 + 6 = 24 \] So, the result is: \[ 24.0 \] ### Second Equation: \[ \left(\frac{72}{9}\right\)[/tex] + 3 - 5 + \left(4 \times 5\right\) \]
1. Calculate [tex]\( \frac{72}{9}\)[/tex]:
[tex]\[ \frac{72}{9} = 8 \][/tex]
2. Calculate [tex]\( 4 \times 5 \)[/tex]:
[tex]\[ 4 \times 5 = 20 \][/tex]
3. Combine them:
[tex]\[ 8 + 3 - 5 + 20 \][/tex]
4. Simplify step-by-step:
[tex]\[ 8 + 3 = 11 \][/tex]
[tex]\[ 11 - 5 = 6 \][/tex]
[tex]\[ 6 + 20 = 26 \][/tex]
So, the result is:
[tex]\[ 26.0 \][/tex]
### Third Equation:
[tex]\[ 5 + 3 - 4 + \left(6 \times 7\right\) - \left(\frac{18}{3}\right\) \][/tex]
1. Calculate [tex]\( 6 \times 7 \)[/tex]:
[tex]\[ 6 \times 7 = 42 \][/tex]
2. Calculate [tex]\( \frac{18}{3}\)[/tex]:
[tex]\[ \frac{18}{3} = 6 \][/tex]
3. Combine them:
[tex]\[ 5 + 3 - 4 + 42 - 6 \][/tex]
4. Simplify step-by-step:
[tex]\[ 5 + 3 = 8 \][/tex]
[tex]\[ 8 - 4 = 4 \][/tex]
[tex]\[ 4 + 42 = 46 \][/tex]
[tex]\[ 46 - 6 = 40 \][/tex]
So, the result is:
[tex]\[ 40.0 \][/tex]
### Fourth Equation:
[tex]\[ 100 - 52 - \left(\frac{56}{7}\right\) + 13 \][/tex]
1. Calculate [tex]\( \frac{56}{7}\)[/tex]:
[tex]\[ \frac{56}{7} = 8 \][/tex]
2. Combine them:
[tex]\[ 100 - 52 - 8 + 13 \][/tex]
3. Simplify step-by-step:
[tex]\[ 100 - 52 = 48 \][/tex]
[tex]\[ 48 - 8 = 40 \][/tex]
[tex]\[ 40 + 13 = 53 \][/tex]
So, the result is:
[tex]\[ 53.0 \][/tex]
### Fifth Equation:
[tex]\[ 7 \times \left(\frac{48}{8}\right\) + \left(\frac{27}{3}\right\) - 5 \times 2 \][/tex]
1. Calculate [tex]\( \frac{48}{8}\)[/tex]:
[tex]\[ \frac{48}{8} = 6 \][/tex]
2. Calculate [tex]\( 7 \times 6 \)[/tex]:
[tex]\[ 7 \times 6 = 42 \][/tex]
3. Calculate [tex]\( \frac{27}{3}\)[/tex]:
[tex]\[ \frac{27}{3} = 9 \][/tex]
4. Calculate [tex]\( 5 \times 2 \)[/tex]:
[tex]\[ 5 \times 2 = 10 \][/tex]
5. Combine them:
[tex]\[ 42 + 9 - 10 \][/tex]
6. Simplify step-by-step:
[tex]\[ 42 + 9 = 51 \][/tex]
[tex]\[ 51 - 10 = 41 \][/tex]
So, the result is:
[tex]\[ 41.0 \][/tex]
In conclusion, the solutions for the given equations are:
1. [tex]\( 3 \times 5 + \left(\frac{18}{6}\right\)[/tex] + 2 \times 3 = 24.0 \)
2. [tex]\( \left(\frac{72}{9}\right\)[/tex] + 3 - 5 + \left(4 \times 5\right\) = 26.0 \)
3. [tex]\( 5 + 3 - 4 + \left(6 \times 7\right\)[/tex] - \left(\frac{18}{3}\right\) = 40.0 \)
4. [tex]\( 100 - 52 - \left(\frac{56}{7}\right\)[/tex] + 13 = 53.0 \)
5. [tex]\( 7 \times \left(\frac{48}{8}\right\)[/tex] + \left(\frac{27}{3}\right\) - 5 \times 2 = 41.0 \)
### First Equation:
[tex]\[ 3 \times 5 + \left(\frac{18}{6}\right\) + 2 \times 3 \][/tex]
1. Calculate [tex]\( 3 \times 5 \)[/tex]:
[tex]\[ 3 \times 5 = 15 \][/tex]
2. Calculate [tex]\( \left(\frac{18}{6}\right\)[/tex]:
[tex]\[ \frac{18}{6} = 3 \][/tex]
3. Calculate [tex]\( 2 \times 3 \: \[ 2 \times 3 = 6 \] 4. Add them together: \[ 15 + 3 + 6 = 24 \] So, the result is: \[ 24.0 \] ### Second Equation: \[ \left(\frac{72}{9}\right\)[/tex] + 3 - 5 + \left(4 \times 5\right\) \]
1. Calculate [tex]\( \frac{72}{9}\)[/tex]:
[tex]\[ \frac{72}{9} = 8 \][/tex]
2. Calculate [tex]\( 4 \times 5 \)[/tex]:
[tex]\[ 4 \times 5 = 20 \][/tex]
3. Combine them:
[tex]\[ 8 + 3 - 5 + 20 \][/tex]
4. Simplify step-by-step:
[tex]\[ 8 + 3 = 11 \][/tex]
[tex]\[ 11 - 5 = 6 \][/tex]
[tex]\[ 6 + 20 = 26 \][/tex]
So, the result is:
[tex]\[ 26.0 \][/tex]
### Third Equation:
[tex]\[ 5 + 3 - 4 + \left(6 \times 7\right\) - \left(\frac{18}{3}\right\) \][/tex]
1. Calculate [tex]\( 6 \times 7 \)[/tex]:
[tex]\[ 6 \times 7 = 42 \][/tex]
2. Calculate [tex]\( \frac{18}{3}\)[/tex]:
[tex]\[ \frac{18}{3} = 6 \][/tex]
3. Combine them:
[tex]\[ 5 + 3 - 4 + 42 - 6 \][/tex]
4. Simplify step-by-step:
[tex]\[ 5 + 3 = 8 \][/tex]
[tex]\[ 8 - 4 = 4 \][/tex]
[tex]\[ 4 + 42 = 46 \][/tex]
[tex]\[ 46 - 6 = 40 \][/tex]
So, the result is:
[tex]\[ 40.0 \][/tex]
### Fourth Equation:
[tex]\[ 100 - 52 - \left(\frac{56}{7}\right\) + 13 \][/tex]
1. Calculate [tex]\( \frac{56}{7}\)[/tex]:
[tex]\[ \frac{56}{7} = 8 \][/tex]
2. Combine them:
[tex]\[ 100 - 52 - 8 + 13 \][/tex]
3. Simplify step-by-step:
[tex]\[ 100 - 52 = 48 \][/tex]
[tex]\[ 48 - 8 = 40 \][/tex]
[tex]\[ 40 + 13 = 53 \][/tex]
So, the result is:
[tex]\[ 53.0 \][/tex]
### Fifth Equation:
[tex]\[ 7 \times \left(\frac{48}{8}\right\) + \left(\frac{27}{3}\right\) - 5 \times 2 \][/tex]
1. Calculate [tex]\( \frac{48}{8}\)[/tex]:
[tex]\[ \frac{48}{8} = 6 \][/tex]
2. Calculate [tex]\( 7 \times 6 \)[/tex]:
[tex]\[ 7 \times 6 = 42 \][/tex]
3. Calculate [tex]\( \frac{27}{3}\)[/tex]:
[tex]\[ \frac{27}{3} = 9 \][/tex]
4. Calculate [tex]\( 5 \times 2 \)[/tex]:
[tex]\[ 5 \times 2 = 10 \][/tex]
5. Combine them:
[tex]\[ 42 + 9 - 10 \][/tex]
6. Simplify step-by-step:
[tex]\[ 42 + 9 = 51 \][/tex]
[tex]\[ 51 - 10 = 41 \][/tex]
So, the result is:
[tex]\[ 41.0 \][/tex]
In conclusion, the solutions for the given equations are:
1. [tex]\( 3 \times 5 + \left(\frac{18}{6}\right\)[/tex] + 2 \times 3 = 24.0 \)
2. [tex]\( \left(\frac{72}{9}\right\)[/tex] + 3 - 5 + \left(4 \times 5\right\) = 26.0 \)
3. [tex]\( 5 + 3 - 4 + \left(6 \times 7\right\)[/tex] - \left(\frac{18}{3}\right\) = 40.0 \)
4. [tex]\( 100 - 52 - \left(\frac{56}{7}\right\)[/tex] + 13 = 53.0 \)
5. [tex]\( 7 \times \left(\frac{48}{8}\right\)[/tex] + \left(\frac{27}{3}\right\) - 5 \times 2 = 41.0 \)