Answer :

To find the value of yy when x=−1.4x=−1.4 on a parabola, we need the equation of the parabola. A typical parabolic equation is of the form:y=ax2+bx+cy=ax2+bx+cLet's assume we are given or know the specific equation of the parabola. For the sake of this example, let's use the equation:y=2x2+3x−1y=2x2+3x−1To find yy when x=−1.4x=−1.4, we substitute x=−1.4x=−1.4 into the equation:y=2(−1.4)2+3(−1.4)−1y=2(−1.4)2+3(−1.4)−1Now, let's calculate this step by step:Calculate (−1.4)2(−1.4)2: (−1.4)2=1.96(−1.4)2=1.96Multiply by the coefficient of x2x2 which is 2: 2⋅1.96=3.922⋅1.96=3.92Calculate 3⋅(−1.4)3⋅(−1.4): 3⋅(−1.4)=−4.23⋅(−1.4)=−4.2Add the results from steps 2 and 3, and then subtract 1: y=3.92−4.2−1y=3.92−4.2−1Simplify: y=3.92−4.2−1y=3.92−4.2−1 y=−0.28−1y=−0.28−1 y=−1.28y=−1.28So, the value of yy when x=−1.4x=−1.4 on the parabola y=2x2+3x−1y=2x2+3x−1 is y=−1.28y=−1.28.