Question 1 of 28

[tex]$\overline{TX}$[/tex] is the perpendicular bisector of [tex]$\triangle STU$[/tex], and [tex]$TX$[/tex] is a shared side of [tex]$\triangle STX$[/tex] and [tex]$\triangle UTX$[/tex]. Which of the following must be congruent in order to verify that [tex]$\triangle STX \cong \triangle UTX$[/tex]?

A. [tex]$\overline{SX} \cong \overline{TX}$[/tex]

B. [tex]$\overline{ST} \cong \overline{UX}$[/tex]

C. [tex]$\overline{SX} \cong \overline{UX}$[/tex]

D. [tex]$\overline{ST} \cong \overline{TX}$[/tex]



Answer :

To determine which sides must be congruent in order to verify that triangle [tex]\( \triangle STX \cong \triangle UTX \)[/tex], let's analyze the given information step-by-step:

1. Perpendicular Bisector:
Given that [tex]\( \overline{TX} \)[/tex] is the perpendicular bisector of [tex]\( \triangle STU \)[/tex], this means [tex]\( TX \)[/tex] intersects [tex]\( ST \)[/tex] and [tex]\( TU \)[/tex] at [tex]\( T \)[/tex], creating a right angle. It also means that [tex]\( T \)[/tex] bisects the segment [tex]\( SU \)[/tex], implying [tex]\( SX = UX \)[/tex].

2. Common Side:
Both triangles [tex]\( \triangle STX \)[/tex] and [tex]\( \triangle UTX \)[/tex] share the side [tex]\( TX \)[/tex].

By analyzing these points:

- Perpendicular Bisector Property: Since [tex]\( \overline{TX} \)[/tex] bisects [tex]\( \overline{SU} \)[/tex] at [tex]\( T \)[/tex], this results in [tex]\( \overline{SX} \cong \overline{UX} \)[/tex].
- Shared Side: The side [tex]\( \overline{TX} \)[/tex] is common to both triangles [tex]\( \triangle STX \)[/tex] and [tex]\( \triangle UTX \)[/tex].

For the triangles [tex]\( \triangle STX \)[/tex] and [tex]\( \triangle UTX \)[/tex] to be congruent ( [tex]\( \triangle STX \cong \triangle UTX \)[/tex] ), the congruent sides required by the given choices must be:

Choice C: [tex]\( \overline{SX} \cong \overline{UX} \)[/tex]

This is because [tex]\( \overline{SX} = \overline{UX} \)[/tex] is derived from the property of the perpendicular bisector.

Thus, the correct answer is:

C. [tex]\( \overline{SX} \cong \overline{UX} \)[/tex]

C

Have a good day!   Brainly User