What is the solution to the equation [tex][tex]$5n + 34 = -2(1 - 7n)$[/tex][/tex]?

Type the correct answer in the box. Use numerals instead of words for numbers.

[tex]n = \_\_\_\_\_\_\_[/tex]



Answer :

To solve the equation [tex]\( 5n + 34 = -2(1 - 7n) \)[/tex], follow these steps:

1. First, distribute the [tex]\(-2\)[/tex] on the right side of the equation:
[tex]\[ -2(1 - 7n) = -2 \cdot 1 + (-2) \cdot (-7n) = -2 + 14n \][/tex]

2. Rewrite the equation with the distributed terms:
[tex]\[ 5n + 34 = -2 + 14n \][/tex]

3. To isolate the terms involving [tex]\( n \)[/tex], subtract [tex]\( 14n \)[/tex] from both sides of the equation:
[tex]\[ 5n - 14n + 34 = -2 \][/tex]
Simplify this to:
[tex]\[ -9n + 34 = -2 \][/tex]

4. Next, move the constant term to one side by subtracting 34 from both sides:
[tex]\[ -9n = -2 - 34 \][/tex]
Simplify the right side:
[tex]\[ -9n = -36 \][/tex]

5. To solve for [tex]\( n \)[/tex], divide both sides by [tex]\(-9\)[/tex]:
[tex]\[ n = \frac{-36}{-9} \][/tex]

6. Simplify the fraction:
[tex]\[ n = 4 \][/tex]

So, the solution to the equation is:
[tex]\[ n = 4 \][/tex]