A local candy shop sells boxes of chocolate for [tex]$\$[/tex]3.75[tex]$ each. If a customer purchases six or more boxes, the cost is only $[/tex]\[tex]$3.25$[/tex] per box, plus an additional [tex]$\$[/tex]5[tex]$ fee per order. The total cost \( C(x) \) for \( x \) boxes can be modeled by the function below.

\[
C(x)=\begin{cases}
3.75x, & x \ \textless \ 6 \\
3.25x + 5, & x \geq 6
\end{cases}
\]

Predict the cost of an order with 6 boxes:
A. $[/tex]\[tex]$14.50$[/tex]
B. [tex]$\$[/tex]22.50[tex]$
C. $[/tex]\[tex]$24.50$[/tex]
D. [tex]$\$[/tex]27.50$



Answer :

To determine the cost of an order with 6 boxes using the given piecewise function [tex]\( C(x) \)[/tex], we need to analyze which part of the piecewise function to use when [tex]\( x = 6 \)[/tex].

The piecewise function is defined as:
[tex]\[ C(x) = \begin{cases} 3.75x & \text{if } x < 6 \\ 3.25x + 5 & \text{if } x \geq 6 \end{cases} \][/tex]

Given that [tex]\( x = 6 \)[/tex], we fall into the second part of the piecewise function because [tex]\( x \geq 6 \)[/tex]. Therefore, we use the equation:
[tex]\[ C(x) = 3.25x + 5 \][/tex]

Now, substituting [tex]\( x = 6 \)[/tex] into this equation, we get:
[tex]\[ C(6) = 3.25 \times 6 + 5 \][/tex]

First, calculate [tex]\( 3.25 \times 6 \)[/tex]:
[tex]\[ 3.25 \times 6 = 19.5 \][/tex]

Next, add 5 to the result:
[tex]\[ 19.5 + 5 = 24.5 \][/tex]

Therefore, the cost of an order with 6 boxes is:
[tex]\[ \$ 24.50 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{24.50} \][/tex]