Use the marginal tax rate chart to answer the question.

Marginal Tax Rate Chart
\begin{tabular}{|l|l|}
\hline Tax Bracket & Marginal Tax Rate \\
\hline[tex]$\$[/tex] 0-\[tex]$ 10,275$[/tex] & [tex]$10 \%$[/tex] \\
\hline[tex]$\$[/tex] 10,276-\[tex]$ 41,175$[/tex] & [tex]$12 \%$[/tex] \\
\hline[tex]$\$[/tex] 41,176-\[tex]$ 89,075$[/tex] & [tex]$22 \%$[/tex] \\
\hline[tex]$\$[/tex] 89,076-\[tex]$ 170,050$[/tex] & [tex]$24 \%$[/tex] \\
\hline[tex]$\$[/tex] 170,051-\[tex]$ 215,950$[/tex] & [tex]$32 \%$[/tex] \\
\hline[tex]$\$[/tex] 215,951-\[tex]$ 539,900$[/tex] & [tex]$35 \%$[/tex] \\
\hline[tex]$\ \textgreater \ \$[/tex] 539,901[tex]$ & $[/tex]37 \%[tex]$ \\
\hline
\end{tabular}

Determine the effective tax rate for a taxable income of $[/tex]\[tex]$ 23,470$[/tex]. Round the final answer to the nearest hundredth.



Answer :

To determine the effective tax rate for a taxable income of \[tex]$23,470, we need to calculate the total tax owed based on the given marginal tax rates and then find the effective tax rate. Step-by-Step Solution: 1. Identify the income ranges for each tax bracket and their corresponding marginal tax rates: - \$[/tex]0 - \[tex]$10,275 at 10% - \$[/tex]10,276 - \[tex]$41,175 at 12% - \$[/tex]41,176 - \[tex]$89,075 at 22% - \$[/tex]89,076 - \[tex]$170,050 at 24% - \$[/tex]170,051 - \[tex]$215,950 at 32% - \$[/tex]215,951 - \[tex]$539,900 at 35% - Over \$[/tex]539,901 at 37%

2. Break down the income of \[tex]$23,470 into the relevant tax brackets: - The first \$[/tex]10,275 is taxed at 10%.
- The next portion, from \[tex]$10,276 to \$[/tex]23,470, falls into the 12% bracket.

3. Calculate the tax for each portion of the income:
- For the first \[tex]$10,275 at 10%: \[ \text{Tax for the first bracket} = 10,275 \times 0.10 = 1,027.50 \] - For the income from \$[/tex]10,276 to \[tex]$23,470 (which is \$[/tex]13,195) at 12%:
[tex]\[ \text{Tax for the second bracket} = (23,470 - 10,275) \times 0.12 = 13,195 \times 0.12 = 1,583.40 \][/tex]

4. Sum the taxes for all brackets:
[tex]\[ \text{Total tax} = 1,027.50 + 1,583.40 = 2,610.90 \][/tex]

5. Calculate the effective tax rate:
[tex]\[ \text{Effective tax rate} = \left(\frac{\text{Total tax}}{\text{Total income}}\right) \times 100 = \left(\frac{2,610.90}{23,470}\right) \times 100 \approx 11.12\% \][/tex]

6. Round to the nearest hundredth:
[tex]\[ \text{Effective tax rate} \approx 11.12\% \][/tex]

Thus, the effective tax rate for a taxable income of \$23,470 is 11.12%.