A cube of iron [tex]$\left(C_p = 0.450 \, \text{J} / \text{g} \cdot { }^{\circ} \text{C} \right)$[/tex] with a mass of [tex]$55.8 \, \text{g}$[/tex] is heated from [tex]$25.0^{\circ} \text{C}$[/tex] to [tex]$49.0^{\circ} \text{C}$[/tex]. How much heat is required for this process? Round your answer to three significant figures.

Use the formula [tex]$q = m C_p \Delta T$[/tex].

[tex]$\square \, \text{J}$[/tex]



Answer :

Sure, let's go through the problem step-by-step.

### Problem Statement Recap
We need to calculate the amount of heat required to heat a cube of iron from [tex]\(25.0^{\circ} C\)[/tex] to [tex]\(49.0^{\circ} C\)[/tex]. We'll use the specific heat capacity of iron [tex]\(C_p\)[/tex], the mass of the cube, and the initial and final temperatures to find the heat required using the formula:

[tex]\[ q = m \times C_p \times \Delta T \][/tex]

### Given Values
1. Specific heat capacity, [tex]\(C_p = 0.450 \, \text{J/(g} \cdot {}^{\circ}\text{C)}\)[/tex]
2. Mass of the iron cube, [tex]\(m = 55.8 \, \text{g}\)[/tex]
3. Initial temperature, [tex]\(T_i = 25.0^{\circ}C\)[/tex]
4. Final temperature, [tex]\(T_f = 49.0^{\circ}C\)[/tex]

### Steps to Solve

1. Calculate the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i \][/tex]
Substituting the given values:
[tex]\[ \Delta T = 49.0^{\circ} C - 25.0^{\circ} C \][/tex]
[tex]\[ \Delta T = 24.0^{\circ} C \][/tex]

2. Plug the values into the formula:
[tex]\[ q = m \times C_p \times \Delta T \][/tex]
Using the given values:
[tex]\[ q = 55.8 \, \text{g} \times 0.450 \, \text{J/(g} \cdot {}^{\circ}\text{C)} \times 24.0^{\circ}C \][/tex]

3. Calculate the heat required (q):
[tex]\[ q = 55.8 \times 0.450 \times 24.0 \][/tex]

### Numerical Calculation
[tex]\[ q = 55.8 \times 0.450 = 25.11 \][/tex]
[tex]\[ q = 25.11 \times 24.0 = 602.64 \, \text{J} \][/tex]

### Conclusion
The heat required to heat the iron cube from [tex]\(25.0^{\circ}C\)[/tex] to [tex]\(49.0^{\circ}C\)[/tex] is:

[tex]\[ \boxed{602.64 \, \text{J}} \][/tex]

Rounding to three significant figures, the heat required is:

[tex]\[ \boxed{603 \, \text{J}} \][/tex]

So, [tex]\( 603\, \text{J} \)[/tex] of heat is needed to heat the iron cube from [tex]\( 25.0^{\circ} C \)[/tex] to [tex]\( 49.0^{\circ} C \)[/tex].