Calculate the slope of the given line using either the slope formula [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex] or by counting [tex]\frac{\text {rise}}{\text {run}}[/tex]. Simplify your answer.

A. [tex]m = 4[/tex]
B. [tex]m = \frac{-1}{4}[/tex]
C. [tex]m = \frac{-8}{3}[/tex]
D. [tex]m = \frac{1}{4}[/tex]



Answer :

To calculate the slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], we use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Let's consider two points given as examples: [tex]\((1, 2)\)[/tex] and [tex]\((5, 6)\)[/tex].

1. Identify the coordinates:
[tex]\[ (x_1, y_1) = (1, 2) \][/tex]
[tex]\[ (x_2, y_2) = (5, 6) \][/tex]

2. Compute the change in [tex]\( y \)[/tex] (rise) and the change in [tex]\( x \)[/tex] (run):
[tex]\[ \text{rise} = y_2 - y_1 = 6 - 2 = 4 \][/tex]
[tex]\[ \text{run} = x_2 - x_1 = 5 - 1 = 4 \][/tex]

3. Substitute these values into the slope formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4}{4} = 1 \][/tex]

So, the slope [tex]\( m \)[/tex] of the line passing through the points [tex]\((1, 2)\)[/tex] and [tex]\((5, 6)\)[/tex] is [tex]\(1\)[/tex].

We now compare this slope to the provided choices:
[tex]\[ m = 4 \][/tex]
[tex]\[ m = \frac{-1}{4} \][/tex]
[tex]\[ m = \frac{-8}{3} \][/tex]
[tex]\[ m = \frac{1}{4} \][/tex]

None of the given choices match our calculated slope of [tex]\(1\)[/tex]. Therefore, the result is [tex]\(1\)[/tex].