Answer :
Sure, let's go through the calculation step-by-step to determine which option is correct for the number [tex]\(2.5 \times 10^5\)[/tex].
First, remember that [tex]\(10^5\)[/tex] means 10 raised to the power of 5. This equals 100,000 because:
[tex]\[ 10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100,000 \][/tex]
Next, we need to multiply [tex]\(2.5\)[/tex] by [tex]\(100,000\)[/tex]:
[tex]\[ 2.5 \times 100,000 = 250,000 \][/tex]
Thus, [tex]\(2.5 \times 10^5\)[/tex] is equal to 250,000.
Now, let's match this result with the given options:
- Option A: [tex]\(2,500,000\)[/tex]
- Option B: [tex]\(2,500\)[/tex]
- Option C: [tex]\(25,000\)[/tex]
- Option D: [tex]\(250,000\)[/tex]
The correct option is:
[tex]\[ \boxed{250,000} \][/tex]
First, remember that [tex]\(10^5\)[/tex] means 10 raised to the power of 5. This equals 100,000 because:
[tex]\[ 10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100,000 \][/tex]
Next, we need to multiply [tex]\(2.5\)[/tex] by [tex]\(100,000\)[/tex]:
[tex]\[ 2.5 \times 100,000 = 250,000 \][/tex]
Thus, [tex]\(2.5 \times 10^5\)[/tex] is equal to 250,000.
Now, let's match this result with the given options:
- Option A: [tex]\(2,500,000\)[/tex]
- Option B: [tex]\(2,500\)[/tex]
- Option C: [tex]\(25,000\)[/tex]
- Option D: [tex]\(250,000\)[/tex]
The correct option is:
[tex]\[ \boxed{250,000} \][/tex]