emy383
Answered

Given the functions:
[tex]\ \textless \ br/\ \textgreater \ f(x) = x^3 + 3x, \quad g(x) = \sqrt{5x}, \quad h(x) = 8x - 2\ \textless \ br/\ \textgreater \ [/tex]

Evaluate the function [tex](g \circ f)(x)[/tex] for [tex]x = 2[/tex]. Write your answer in [tex]e[/tex].

[tex](g \circ f)(2) = \square[/tex]

[tex]\sqrt{\square}[/tex]

Undefined



Answer :

To evaluate the function [tex]\((g \circ f)(x)\)[/tex] for [tex]\(x=2\)[/tex], we need to follow these steps:

1. Evaluate [tex]\(f(2)\)[/tex]:
The function [tex]\(f(x)\)[/tex] is defined as:
[tex]\[ f(x) = x^3 + 3x \][/tex]
Substituting [tex]\(x = 2\)[/tex]:
[tex]\[ f(2) = 2^3 + 3 \cdot 2 = 8 + 6 = 14 \][/tex]

2. Evaluate [tex]\(g(f(2))\)[/tex]:
From the first step, we found that [tex]\(f(2) = 14\)[/tex]. Now, we need to find [tex]\(g(14)\)[/tex].
The function [tex]\(g(x)\)[/tex] is defined as:
[tex]\[ g(x) = \sqrt{5x} \][/tex]
Substituting [tex]\(x = 14\)[/tex]:
[tex]\[ g(14) = \sqrt{5 \cdot 14} = \sqrt{70} \][/tex]

3. Simplify the expression:
The simplest exact form for [tex]\(g(14)\)[/tex] is [tex]\(\sqrt{70}\)[/tex]. Converting this to a numerical value:
[tex]\[ \sqrt{70} \approx 8.366600265340756 \][/tex]

Putting all this together, we conclude that:
[tex]\[ (g \circ f)(2) = g(f(2)) = g(14) = \sqrt{70} \][/tex]

Therefore, [tex]\((g \circ f)(2)\)[/tex] is:
[tex]\[ (g \circ f)(2) = \sqrt{70} \approx 8.366600265340756 \][/tex]

The boxed answer is:
[tex]\[ (g \circ f)(2) = \sqrt{70} \][/tex]