Select the best answer for the question.

11. Find the possible value or values of [tex]r[/tex] in the quadratic equation [tex]r^2 - 7r - 8 = 0[/tex].

A. [tex]r = \frac{17 + \sqrt{277}}{6}, r = \frac{17 - \sqrt{277}}{6}[/tex]

B. [tex]r = 8, r = -1[/tex]

C. [tex]r = \frac{2}{3}, r = 5[/tex]

D. [tex]r = -10, r = 3[/tex]



Answer :

To find the possible values of [tex]\( r \)[/tex] in the quadratic equation [tex]\( r^2 - 7r - 8 = 0 \)[/tex], we will solve it using the quadratic formula:

[tex]\[ r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, the quadratic equation is in the form [tex]\( ar^2 + br + c = 0 \)[/tex]. Identifying the coefficients, we have:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = -7 \][/tex]
[tex]\[ c = -8 \][/tex]

First, calculate the discriminant ([tex]\( \Delta \)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-7)^2 - 4(1)(-8) \][/tex]
[tex]\[ \Delta = 49 + 32 \][/tex]
[tex]\[ \Delta = 81 \][/tex]

With the discriminant calculated, we now find the roots of the equation using the quadratic formula:
[tex]\[ r = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]

Plugging in the values:
[tex]\[ r = \frac{-(-7) \pm \sqrt{81}}{2(1)} \][/tex]
[tex]\[ r = \frac{7 \pm 9}{2} \][/tex]

This gives us two possible solutions:
[tex]\[ r_1 = \frac{7 + 9}{2} = \frac{16}{2} = 8 \][/tex]
[tex]\[ r_2 = \frac{7 - 9}{2} = \frac{-2}{2} = -1 \][/tex]

Therefore, the possible values of [tex]\( r \)[/tex] are:
[tex]\[ r = 8 \][/tex]
[tex]\[ r = -1 \][/tex]

Thus, the correct answer is:

B. [tex]\( r = 8, r = -1 \)[/tex]