Quadrilateral [tex]$ABCD$[/tex] has coordinates [tex]$A (3,-5), B (5,-2), C (10,-4), D (8,-7)$[/tex].

Determine the classification of quadrilateral [tex]$ABCD$[/tex]:

A. Rectangle, because opposite sides are congruent and adjacent sides are perpendicular.

B. Square, because all four sides are congruent and adjacent sides are perpendicular.

C. Parallelogram, because opposite sides are congruent and adjacent sides are not perpendicular.

D. Rhombus, because all four sides are congruent and adjacent sides are not perpendicular.



Answer :

To determine the type of quadrilateral ABCD, we will go through the properties required to classify it. The vertices of quadrilateral ABCD are given by the coordinates [tex]\( A (3,-5) \)[/tex], [tex]\( B (5,-2) \)[/tex], [tex]\( C (10,-4) \)[/tex], and [tex]\( D (8,-7) \)[/tex]. Let's analyze the quadrilateral step-by-step.

1. Calculate the lengths of the sides:
- Side [tex]\( AB \)[/tex]:
[tex]\[ AB = \sqrt{(5 - 3)^2 + (-2 - (-5))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \][/tex]
- Side [tex]\( BC \)[/tex]:
[tex]\[ BC = \sqrt{(10 - 5)^2 + (-4 - (-2))^2} = \sqrt{5^2 + (-2)^2} = \sqrt{25 + 4} = \sqrt{29} \][/tex]
- Side [tex]\( CD \)[/tex]:
[tex]\[ CD = \sqrt{(10 - 8)^2 + (-4 - (-7))^2} = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \][/tex]
- Side [tex]\( DA \)[/tex]:
[tex]\[ DA = \sqrt{(8 - 3)^2 + (-7 - (-5))^2} = \sqrt{5^2 + (-2)^2} = \sqrt{25 + 4} = \sqrt{29} \][/tex]

2. Check for congruence of sides:
- Opposite sides [tex]\( AB \)[/tex] and [tex]\( CD \)[/tex] are congruent ([tex]\( \sqrt{13} \)[/tex]).
- Opposite sides [tex]\( BC \)[/tex] and [tex]\( DA \)[/tex] are congruent ([tex]\( \sqrt{29} \)[/tex]).

3. Check for perpendicularity of adjacent sides:
- Vectors of the sides:
- Vector [tex]\( \overrightarrow{AB} \)[/tex]:
[tex]\[ \overrightarrow{AB} = (5 - 3, -2 - (-5)) = (2, 3) \][/tex]
- Vector [tex]\( \overrightarrow{BC} \)[/tex]:
[tex]\[ \overrightarrow{BC} = (10 - 5, -4 - (-2)) = (5, -2) \][/tex]
- Vector [tex]\( \overrightarrow{CD} \)[/tex]:
[tex]\[ \overrightarrow{CD} = (10 - 8, -4 - (-7)) = (2, 3) \][/tex]
- Vector [tex]\( \overrightarrow{DA} \)[/tex]:
[tex]\[ \overrightarrow{DA} = (3 - 8, -5 - (-7)) = (-5, 2) \][/tex]
- Check Dot Products for Perpendicularity:
- Dot product [tex]\( \overrightarrow{AB} \cdot \overrightarrow{BC} \)[/tex]:
[tex]\[ \overrightarrow{AB} \cdot \overrightarrow{BC} = 2 \cdot 5 + 3 \cdot (-2) = 10 - 6 = 4 \neq 0 \][/tex]
- Because the dot product is not zero, adjacent sides [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] are not perpendicular.

From our findings:
- Opposite sides [tex]\( AB \)[/tex] and [tex]\( CD \)[/tex] are congruent, and opposite sides [tex]\( BC \)[/tex] and [tex]\( DA \)[/tex] are congruent.
- Adjacent sides are not perpendicular.

Given these properties, Quadrilateral [tex]\(ABCD\)[/tex] is indeed a parallelogram because opposite sides are congruent, but the adjacent sides are not perpendicular.

Therefore, the correct classification for quadrilateral [tex]\(ABCD\)[/tex] is:
[tex]\[ \boxed{\text{parallelogram}} \][/tex]