emy383
Answered

Given the functions:
[tex]\[ f(x)=4x \quad g(x)=|x-3| \quad h(x)=\frac{1}{x+2} \][/tex]

Evaluate the function [tex]\((f-g)(6)\)[/tex] for the given value of [tex]\(x\)[/tex].

[tex]\[
(f-g)(6) \text{ is } \square.
\][/tex]



Answer :

Sure! Let's evaluate the function [tex]\((f - g)(6)\)[/tex] step by step for the given value of [tex]\(x\)[/tex].

1. Define the given functions:
[tex]\[ f(x) = 4x \][/tex]
[tex]\[ g(x) = |x - 3| \][/tex]
[tex]\[ h(x) = \frac{1}{x + 2} \][/tex]

However, in this case, we are only concerned with [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] for evaluating [tex]\((f - g)(6)\)[/tex].

2. Calculate [tex]\(f(6)\)[/tex]:
[tex]\[ f(6) = 4 \cdot 6 = 24 \][/tex]

3. Calculate [tex]\(g(6)\)[/tex]:
[tex]\[ g(6) = |6 - 3| = 3 \][/tex]

4. Calculate [tex]\((f - g)(6)\)[/tex]:
[tex]\[ (f - g)(6) = f(6) - g(6) = 24 - 3 = 21 \][/tex]

Therefore, [tex]\((f - g)(6)\)[/tex] is [tex]\(21\)[/tex].

So,
[tex]\[ (f - g)(6) = 21 \][/tex]