1. Simplify the following and express them in index form.

a) [tex]\( 6 \times n \times 6 \times 6 \times 6 \times n \)[/tex]

b) [tex]\( \sqrt{1} \times \sqrt{2} \times \sqrt{50} \)[/tex]

c) [tex]\( \frac{x}{2} \times \frac{1}{2} \times \frac{1}{2} \)[/tex]



Answer :

Let's simplify each of the given expressions step-by-step:

### Expression 1: [tex]\(6 \times n \times 6 \times 6 \times 6 \times n\)[/tex]

1. Group the similar factors together:
[tex]\[ 6 \times 6 \times 6 \times 6 \times n \times n \][/tex]

2. Combine the factors with the same base by adding their exponents:
[tex]\[ 6^4 \times n^2 \][/tex]

Simplified form:
[tex]\[ 6^4 \times n^2 \][/tex]

### Expression 2: [tex]\(\sqrt{1} \times \sqrt{2} \times \sqrt{50}\)[/tex]

1. Calculate [tex]\(\sqrt{1}\)[/tex]:
[tex]\[ \sqrt{1} = 1 \][/tex]

2. Rewrite [tex]\(\sqrt{50}\)[/tex] in terms of its factors:
[tex]\[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5 \times \sqrt{2} \][/tex]

3. Substitute these back into the expression:
[tex]\[ 1 \times \sqrt{2} \times 5 \times \sqrt{2} \][/tex]

4. Combine the radicals:
[tex]\[ 1 \times 5 \times (\sqrt{2} \times \sqrt{2}) = 5 \times 2 = 10 \][/tex]

Simplified form:
[tex]\[ 10 \][/tex]

### Expression 3: [tex]\(\frac{x}{2} \times \frac{1}{2} \times \frac{1}{2}\)[/tex]

1. Rewrite the expression multiplying the fractions together:
[tex]\[ \frac{x}{2} \times \frac{1}{2} \times \frac{1}{2} \][/tex]

2. Combine the fractions:
[tex]\[ \frac{x \times 1 \times 1}{2 \times 2 \times 2} = \frac{x}{8} \][/tex]

Simplified form:
[tex]\[ \frac{x}{8} \][/tex]

### Summary:

1. [tex]\(6^4 \times n^2\)[/tex]
2. [tex]\(10\)[/tex]
3. [tex]\(\frac{x}{8}\)[/tex]