The table shows a representation of the number of miles a car drives over time.

\begin{tabular}{|c|c|}
\hline
Hours, [tex]$x$[/tex] & Miles, [tex]$y$[/tex] \\
\hline
3 & 195 \\
\hline
4 & 260 \\
\hline
5 & 325 \\
\hline
6 & 390 \\
\hline
\end{tabular}

Pattern: Each [tex]$x$[/tex] value is multiplied by 65 to get each [tex]$y$[/tex] value.

What is the equation for this situation?
[tex]\[ y = 65x \][/tex]

Which could NOT be a point on this table?



Answer :

To solve this question, we need to determine if each point in the table satisfies the given pattern, which is that each [tex]\( y \)[/tex] value should be 65 times the corresponding [tex]\( x \)[/tex] value. The equation for this relationship is given by:

[tex]\[ y = 65x \][/tex]

First, let's check each point in the table to ensure they fit this equation.

1. For the point [tex]\((3, 195)\)[/tex]:
- Calculate [tex]\( y \)[/tex] using the equation:
[tex]\[ y = 65 \times 3 = 195 \][/tex]
- Since the calculated [tex]\( y \)[/tex] matches the given [tex]\( y \)[/tex], this point fits the pattern.

2. For the point [tex]\((4, 260)\)[/tex]:
- Calculate [tex]\( y \)[/tex] using the equation:
[tex]\[ y = 65 \times 4 = 260 \][/tex]
- Since the calculated [tex]\( y \)[/tex] matches the given [tex]\( y \)[/tex], this point fits the pattern.

3. For the point [tex]\((5, 325)\)[/tex]:
- Calculate [tex]\( y \)[/tex] using the equation:
[tex]\[ y = 65 \times 5 = 325 \][/tex]
- Since the calculated [tex]\( y \)[/tex] matches the given [tex]\( y \)[/tex], this point fits the pattern.

4. For the point [tex]\((6, 390)\)[/tex]:
- Calculate [tex]\( y \)[/tex] using the equation:
[tex]\[ y = 65 \times 6 = 390 \][/tex]
- Since the calculated [tex]\( y \)[/tex] matches the given [tex]\( y \)[/tex], this point fits the pattern.

Since all the points in the table conform to the equation [tex]\( y = 65x \)[/tex], none of these points deviate from the given pattern. Therefore, there isn't a point among the provided ones that does NOT fit the pattern.

Hence, no point from the provided set of points could NOT be on this table.