The equation of circle [tex]$A$[/tex] is [tex][tex]$x^2 + y^2 + Cx + Dy + E = 0$[/tex][/tex]. If the circle is moved horizontally to the left of the [tex][tex]$y$[/tex][/tex]-axis without changing the radius, how are the coefficients [tex][tex]$C$[/tex][/tex] and [tex][tex]$D$[/tex][/tex] affected?



Answer :

The equation of a circle in its general form is given by:

[tex]\[ x^2 + y^2 + Cx + Dy + E = 0 \][/tex]

To understand how a horizontal move to the left affects the coefficients [tex]\(C\)[/tex] and [tex]\(D\)[/tex], we first need to convert this equation to the center-radius form and then see how the shift modifies it. Let's proceed step-by-step:

### Step 1: Convert to Center-Radius Form
The general form [tex]\( x^2 + y^2 + Cx + Dy + E = 0 \)[/tex] can be completed to match the form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex].

Complete the square for both [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:

[tex]\[ x^2 + Cx \to (x + \frac{C}{2})^2 - \left( \frac{C}{2} \right)^2 \][/tex]
[tex]\[ y^2 + Dy \to (y + \frac{D}{2})^2 - \left( \frac{D}{2} \right)^2 \][/tex]

So, the equation becomes:

[tex]\[ (x + \frac{C}{2})^2 - \left( \frac{C}{2} \right)^2 + (y + \frac{D}{2})^2 - \left( \frac{D}{2} \right)^2 + E = 0 \][/tex]

Combine the constant terms to isolate the squared form:

[tex]\[ (x + \frac{C}{2})^2 + (y + \frac{D}{2})^2 = \left( \frac{C}{2} \right)^2 + \left( \frac{D}{2} \right)^2 - E \][/tex]

This gives us the center of the circle [tex]\((- \frac{C}{2}, - \frac{D}{2})\)[/tex] and radius [tex]\(r = \sqrt{\left( \frac{C}{2} \right)^2 + \left( \frac{D}{2} \right)^2 - E}\)[/tex].

### Step 2: Translate the Circle
If the circle is moved horizontally to the left by [tex]\(a\)[/tex] units, the new center will be:

[tex]\[ \left(- \frac{C}{2} - a, - \frac{D}{2} \right) \][/tex]

### Step 3: New Equation of Circle
With the new center, the equation of the circle in center-radius form is:

[tex]\[ \left( x - \left( -\frac{C}{2} - a \right) \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]
[tex]\[ \left( x + \frac{C}{2} + a \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]

### Step 4: Convert Back to General Form
Expand and simplify this new equation:

[tex]\[ \left( x + \frac{C}{2} + a \right)^2 + \left( y + \frac{D}{2} \right)^2 = r^2 \][/tex]

[tex]\[ x^2 + 2x\left( \frac{C}{2} + a \right) + \left( \frac{C}{2} + a \right)^2 + y^2 + Dy + \left( \frac{D}{2} \right)^2 = r^2\][/tex]

Comparing this with the standard form [tex]\( x^2 + y^2 + C'x + D'y + E' = 0 \)[/tex]:

[tex]\[ x^2 + y^2 + 2x\left( \frac{C}{2} + a \right) + C + k\][/tex]

We can see that the new coefficients [tex]\(C'\)[/tex] and [tex]\(D'\)[/tex] are given by:

[tex]\[ C' = 2\left( \frac{C}{2} + a \right) = C + 2a \][/tex]

The coefficient [tex]\( D \)[/tex] does not change, as there was no vertical shift:

[tex]\[ D' = D \][/tex]

### Conclusion

By translating the circle horizontally to the left by [tex]\(a\)[/tex] units:
- The new coefficient [tex]\( C' \)[/tex] becomes [tex]\( C + 2a \)[/tex]
- The coefficient [tex]\( D \)[/tex] remains unchanged.