If you apply the changes below to the absolute value parent function, [tex]f(x)=|x|[/tex], what is the equation of the new function?

- Shift 5 units right.
- Shift 7 units down.

A. [tex]g(x)=|x+5|-7[/tex]
B. [tex]g(x)=|x-7|+5[/tex]
C. [tex]g(x)=|x-7|-5[/tex]
D. [tex]g(x)=|x-5|-7[/tex]



Answer :

Sure, let's break down the transformations step by step to understand how the new function is derived from the parent function [tex]\( f(x) = |x| \)[/tex].

1. Shift 5 units to the right:
- When we shift a function horizontally, we replace [tex]\( x \)[/tex] with [tex]\( x - h \)[/tex] where [tex]\( h \)[/tex] is the number of units we're shifting. In this case, we're shifting 5 units to the right, so we replace [tex]\( x \)[/tex] with [tex]\( x - 5 \)[/tex].
- Therefore, [tex]\( f(x) = |x| \)[/tex] becomes [tex]\( f(x) = |x - 5| \)[/tex].

2. Shift 7 units down:
- When we shift a function vertically, we subtract [tex]\( k \)[/tex] from the function where [tex]\( k \)[/tex] is the number of units we're shifting. In this case, we're shifting 7 units down, so we subtract 7 from the function.
- Therefore, [tex]\( f(x) = |x - 5| \)[/tex] becomes [tex]\( g(x) = |x - 5| - 7 \)[/tex].

Putting these steps together, the new function [tex]\( g(x) \)[/tex] after applying both transformations is:

[tex]\[ g(x) = |x - 5| - 7 \][/tex]

Therefore, the correct answer is:

D. [tex]\( g(x) = |x - 5| - 7 \)[/tex]