If you shift the quadratic parent function, [tex]f(x)=x^2[/tex], right 10 units, what is the equation of the new function?

A. [tex]g(x)=(x+10)^2[/tex]
B. [tex]g(x)=(x-10)^2[/tex]
C. [tex]g(x)=x^2-10[/tex]
D. [tex]g(x)=x^2+10[/tex]



Answer :

To find the equation of the new function when the quadratic parent function [tex]\( f(x) = x^2 \)[/tex] is shifted to the right by 10 units, we need to understand how horizontal translations work.

### Step-by-Step Solution:

1. Form the Parent Function:
The parent function given is:
[tex]\[ f(x) = x^2 \][/tex]

2. Understanding Horizontal Shift to the Right:
- When you shift a function horizontally to the right by [tex]\( h \)[/tex] units, you replace [tex]\( x \)[/tex] with [tex]\( (x - h) \)[/tex] in the function.
- For this particular question, [tex]\( h = 10 \)[/tex].

3. Apply the Horizontal Shift:
- We replace [tex]\( x \)[/tex] with [tex]\( (x - 10) \)[/tex] in the parent function [tex]\( f(x) = x^2 \)[/tex]:
[tex]\[ f(x - 10) = (x - 10)^2 \][/tex]

4. Formulate the New Function:
- Therefore, the equation for the new function after shifting the parent function right by 10 units is:
[tex]\[ g(x) = (x - 10)^2 \][/tex]

### Conclusion:
After performing the horizontal shift of the quadratic parent function [tex]\( f(x) = x^2 \)[/tex] to the right by 10 units, the new function is:

[tex]\[ g(x) = (x - 10)^2 \][/tex]

Hence, the correct answer is:
[tex]\[ \boxed{g(x) = (x - 10)^2} \][/tex]

Which matches option B:
[tex]\[ \boxed{g(x) = (x - 10)^2} \][/tex]