To simplify the fraction [tex]\(\frac{3}{48}\)[/tex], follow these detailed steps:
1. Identify the numerator and the denominator:
- Numerator: [tex]\(3\)[/tex]
- Denominator: [tex]\(48\)[/tex]
2. Find the Greatest Common Divisor (GCD):
- The GCD of [tex]\(3\)[/tex] and [tex]\(48\)[/tex] is [tex]\(3\)[/tex].
3. Divide both the numerator and the denominator by the GCD:
- Numerator: [tex]\(\frac{3}{3} = 1\)[/tex]
- Denominator: [tex]\(\frac{48}{3} = 16\)[/tex]
Thus, the simplified form of the fraction [tex]\(\frac{3}{48}\)[/tex] is [tex]\(\frac{1}{16}\)[/tex].
So, step-by-step we have:
- Numerator: [tex]\(3\)[/tex]
- Denominator: [tex]\(48\)[/tex]
- GCD of [tex]\(3\)[/tex] and [tex]\(48\)[/tex]: [tex]\(3\)[/tex]
- Simplified Numerator: [tex]\(1\)[/tex]
- Simplified Denominator: [tex]\(16\)[/tex]
Therefore, [tex]\(\frac{3}{48}\)[/tex] simplifies to [tex]\(\frac{1}{16}\)[/tex].