Type the correct answer in the box. Use numerals instead of words.

Consider this expression:

[tex]\sqrt{a^3-7}+|b|[/tex]

When [tex]a=2[/tex] and [tex]b=-4[/tex], the value of the expression is [tex]\square[/tex].



Answer :

To find the value of the expression [tex]\(\sqrt{a^3 - 7} + |b|\)[/tex] when [tex]\(a = 2\)[/tex] and [tex]\(b = -4\)[/tex], let's go through the steps:

1. Substitute [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the expression:
[tex]\[ a = 2 \quad \text{and} \quad b = -4 \][/tex]

2. Evaluate the term [tex]\(a^3\)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]

3. Subtract 7 from [tex]\(a^3\)[/tex]:
[tex]\[ 8 - 7 = 1 \][/tex]

4. Find the square root of the result:
[tex]\[ \sqrt{1} = 1 \][/tex]

5. Calculate the absolute value of [tex]\(b\)[/tex]:
[tex]\[ | -4 | = 4 \][/tex]

6. Add the results from steps 4 and 5:
[tex]\[ 1 + 4 = 5 \][/tex]

Thus, the value of the expression [tex]\(\sqrt{a^3 - 7} + |b|\)[/tex] when [tex]\(a = 2\)[/tex] and [tex]\(b = -4\)[/tex] is [tex]\(5.0\)[/tex].