Answer :

Certainly! Let's simplify the given expression [tex]\(\frac{16x^2y^2 - 4xy}{3xy}\)[/tex] step by step.

### Step 1: Break up the Fraction
We can start by breaking up the fraction into two separate fractions:

[tex]\[ \frac{16x^2y^2 - 4xy}{3xy} = \frac{16x^2y^2}{3xy} - \frac{4xy}{3xy} \][/tex]

### Step 2: Simplify Each Fraction Separately

#### First Fraction: [tex]\(\frac{16x^2y^2}{3xy}\)[/tex]
- Simplify the numerator and the denominator by canceling common factors:
- [tex]\[ \frac{16x^2y^2}{3xy} = \frac{16 \cdot x \cdot x \cdot y \cdot y}{3 \cdot x \cdot y} \][/tex]
- Cancel out [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from the numerator and denominator:
- [tex]\[ \frac{16x^2y^2}{3xy} = \frac{16 \cdot x \cdot y}{3} \][/tex]
- Which simplifies to:
- [tex]\[ \frac{16xy}{3} \][/tex]

#### Second Fraction: [tex]\(\frac{4xy}{3xy}\)[/tex]
- Simplify this fraction directly by canceling common factors:
- [tex]\[ \frac{4xy}{3xy} = \frac{4}{3} \][/tex]

### Step 3: Combine the Simplified Fractions
Now, combine the results of the simplified fractions:

[tex]\[ \frac{16x^2y^2 - 4xy}{3xy} = \frac{16xy}{3} - \frac{4}{3} \][/tex]

Therefore, the simplified expression is:

[tex]\[ \boxed{\frac{16xy}{3} - \frac{4}{3}} \][/tex]