To find the acceleration of the plane, we can use the following kinematic equation:
[tex]\[ \text{acceleration} = \frac{\text{final velocity} - \text{initial velocity}}{\text{time}} \][/tex]
Here are the values given in the problem:
- Initial velocity ([tex]\(u\)[/tex]) of the airplane: 245 m/s
- Final velocity ([tex]\(v\)[/tex]) of the airplane: 230 m/s
- Time ([tex]\(t\)[/tex]) it took to change velocity: 7 seconds
Now substitute these values into the formula to calculate the acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substitute the given values:
[tex]\[ a = \frac{230\, \text{m/s} - 245\, \text{m/s}}{7\, \text{s}} \][/tex]
Simplify the numerator:
[tex]\[ a = \frac{-15\, \text{m/s}}{7\, \text{s}} \][/tex]
Now divide:
[tex]\[ a = -2.142857\ldots \, \text{m/s}^2 \][/tex]
Rounding to the nearest integer, we get:
[tex]\[ a = -2\, \text{m/s}^2 \][/tex]
Thus, the acceleration of the plane is [tex]\( -2 \, \text{m/s}^2 \)[/tex].
So, the correct answer is:
[tex]\[ -2 \, \text{m/s}^2 \][/tex]