An airplane traveling [tex][tex]$245 \, \text{m/s}$[/tex][/tex] east experienced turbulence, so the pilot decided to slow down to [tex][tex]$230 \, \text{m/s}$[/tex][/tex]. It took the pilot 7 seconds to reach this speed. What is the acceleration of the plane? (Round your answer to the nearest integer.)

A. [tex]-2 \, \text{m/s}^2[/tex]
B. [tex]2 \, \text{m/s}^2[/tex]
C. [tex]67 \, \text{m/s}^2[/tex]
D. [tex]-67 \, \text{m/s}^2[/tex]



Answer :

To find the acceleration of the plane, we can use the following kinematic equation:

[tex]\[ \text{acceleration} = \frac{\text{final velocity} - \text{initial velocity}}{\text{time}} \][/tex]

Here are the values given in the problem:

- Initial velocity ([tex]\(u\)[/tex]) of the airplane: 245 m/s
- Final velocity ([tex]\(v\)[/tex]) of the airplane: 230 m/s
- Time ([tex]\(t\)[/tex]) it took to change velocity: 7 seconds

Now substitute these values into the formula to calculate the acceleration ([tex]\(a\)[/tex]):

[tex]\[ a = \frac{v - u}{t} \][/tex]

Substitute the given values:

[tex]\[ a = \frac{230\, \text{m/s} - 245\, \text{m/s}}{7\, \text{s}} \][/tex]

Simplify the numerator:

[tex]\[ a = \frac{-15\, \text{m/s}}{7\, \text{s}} \][/tex]

Now divide:

[tex]\[ a = -2.142857\ldots \, \text{m/s}^2 \][/tex]

Rounding to the nearest integer, we get:

[tex]\[ a = -2\, \text{m/s}^2 \][/tex]

Thus, the acceleration of the plane is [tex]\( -2 \, \text{m/s}^2 \)[/tex].

So, the correct answer is:

[tex]\[ -2 \, \text{m/s}^2 \][/tex]