B.
[tex]\[
\begin{tabular}{|c|c|c|c|c|c|}
\hline
$x$ & 5 & -5 & 10 & 5 & -10 \\
\hline
$y$ & 13 & -7 & 23 & 17 & -17 \\
\hline
\end{tabular}
\][/tex]



Answer :

Given the data in the table, we have two sets of corresponding values for [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 5 & -5 & 10 & 5 & -10 \\ \hline y & 13 & -7 & 23 & 17 & -17 \\ \hline \end{array} \][/tex]

Let's summarize the information provided:

- When [tex]\(x = 5\)[/tex], [tex]\(y = 13\)[/tex]
- When [tex]\(x = -5\)[/tex], [tex]\(y = -7\)[/tex]
- When [tex]\(x = 10\)[/tex], [tex]\(y = 23\)[/tex]
- When [tex]\(x = 5\)[/tex], [tex]\(y = 17\)[/tex]
- When [tex]\(x = -10\)[/tex], [tex]\(y = -17\)[/tex]

This is a tabulation showing the pairs of [tex]\( (x, y) \)[/tex] values. We can see that for each given [tex]\(x\)[/tex], there is a corresponding [tex]\(y\)[/tex] value.

If we need to perform any further calculations or analysis, we could consider questions like finding a relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex], calculating their averages, or plotting these values to visualize their distribution.

Since the question does not specify an additional task to perform, our detailed step involves ensuring that we correctly interpreted and summarized the given values as pairs:

1. Understanding the data table:
- Given pairs [tex]\((x, y)\)[/tex] values are clearly listed.

2. Write down each pair:
- (5, 13)
- (-5, -7)
- (10, 23)
- (5, 17)
- (-10, -17)

3. Interpret these pairs as needed for further calculations or plotting, if required.

Given the orderly summary of the value pairs, these are the correct and verified data points.