Drag the tiles to the boxes to form correct pairs. Match the pairs of equivalent expressions.

1. [tex]\(\left(-14 + \frac{3}{2} b \right) - \left(1 + \frac{8}{2} b\right)\)[/tex]
2. [tex]\(4b + \frac{13}{2}\)[/tex]
3. [tex]\((5 + 2b) + \left(2b + \frac{3}{2}\right)\)[/tex]
4. [tex]\(8b - 15\)[/tex]
5. [tex]\(\left(\frac{7}{2} b - 3 \right) - (8 + 6b)\)[/tex]
6. [tex]\(\frac{-5}{2} b - 11\)[/tex]
7. [tex]\((-10 + b) + (7b - 5)\)[/tex]
8. [tex]\(-15 - \frac{5}{2} b\)[/tex]

[tex]\[
\begin{array}{cccc}
\square & \xrightarrow{\longleftrightarrow} & \square \\
\square & \xrightarrow{\longleftrightarrow} & \square \\
\end{array}
\][/tex]



Answer :

Let's determine the correct pairs of equivalent expressions step-by-step.

1. Expression 1:
[tex]\[ \left(-14 + \frac{3}{2} b\right) - \left(1 + \frac{8}{2} b\right) \][/tex]
Simplifying the components inside the parentheses:
[tex]\[ = -14 + \frac{3}{2} b - 1 - 4b \][/tex]
Combine like terms:
[tex]\[ = -15 + \frac{3}{2} b - 4b = -15 - \frac{5}{2} b \][/tex]

2. Expression 2:
[tex]\[ 4 b + \frac{13}{2} \][/tex]
This expression is in its simplest form.

3. Expression 3:
[tex]\[ (5 + 2 b) + \left(2 b + \frac{3}{2}\right) \][/tex]
Simplifying the components inside the parentheses:
[tex]\[ = 5 + 2b + 2b + \frac{3}{2} \][/tex]
Combine like terms:
[tex]\[ = 4b + 5 + \frac{3}{2} = 4b + \frac{10}{2} + \frac{3}{2} = 4b + \frac{13}{2} \][/tex]

4. Expression 4:
[tex]\[ 8b - 15 \][/tex]
This expression is in its simplest form.

5. Expression 5:
[tex]\[ \left(\frac{7}{2} b - 3\right) - (8 + 6b) \][/tex]
Simplifying the components inside the parentheses:
[tex]\[ = \frac{7}{2} b - 3 - 8 - 6b \][/tex]
Combine like terms:
[tex]\[ = \frac{7}{2} b - 6b - 11 = -11 - \frac{5}{2} b \][/tex]

6. Expression 6:
[tex]\[ \frac{-5}{2} b - 11 \][/tex]
This expression is in its simplest form.

7. Expression 7:
[tex]\[ (-10 + b) + (7b - 5) \][/tex]
Simplifying the components inside the parentheses:
[tex]\[ = -10 + b + 7b - 5 \][/tex]
Combine like terms:
[tex]\[ = 8b - 15 \][/tex]

8. Expression 8:
[tex]\[ -15 - \frac{5}{2} b \][/tex]
This expression is in its simplest form and equivalent to Expression 1.

Now, let's match the equivalent pairs:

1. [tex]\[ \left(-14 + \frac{3}{2} b\right) - \left(1 + \frac{8}{2} b\right) \xrightarrow{\longleftrightarrow} -15 - \frac{5}{2} b \][/tex]

2. [tex]\[ (5 + 2 b) + \left(2 b + \frac{3}{2}\right) \xrightarrow{\longleftrightarrow} 4 b + \frac{13}{2} \][/tex]

3. [tex]\[ \left(\frac{7}{2} b - 3\right) - (8 + 6 b) \xrightarrow{\longleftrightarrow} \frac{-5}{2} b - 11 \][/tex]

4. [tex]\[ (-10 + b) + (7 b - 5) \xrightarrow{\longleftrightarrow} 8 b - 15 \][/tex]

Thus, the pairs of equivalent expressions are:
[tex]\[ \begin{aligned} &(-14 + \frac{3}{2} b) - (1 + \frac{8}{2} b) \xrightarrow{\longleftrightarrow} -15 - \frac{5}{2} b, \\ &(5 + 2 b) + (2 b + \frac{3}{2}) \xrightarrow{\longleftrightarrow} 4 b + \frac{13}{2}, \\ &\left(\frac{7}{2} b - 3\right) - (8 + 6 b) \xrightarrow{\longleftrightarrow} \frac{-5}{2} b - 11, \\ &(-10 + b) + (7 b - 5) \xrightarrow{\longleftrightarrow} 8 b - 15. \end{aligned} \][/tex]