Answer :
Certainly! Let's go through each part step by step to find the required results.
### a. [tex]\( (-30) \div 10 \)[/tex]
To solve [tex]\( (-30) \div 10 \)[/tex]:
- Dividing a negative number by a positive number gives a negative result.
- [tex]\( \frac{-30}{10} = -3 \)[/tex]
So, [tex]\( (-30) \div 10 = -3.0 \)[/tex]
### b. [tex]\( (-49) \div 49 \)[/tex]
To solve [tex]\( (-49) \div 49 \)[/tex]:
- Dividing a negative number by a positive number gives a negative result.
- [tex]\( \frac{-49}{49} = -1 \)[/tex]
So, [tex]\( (-49) \div 49 = -1.0 \)[/tex]
### c. [tex]\( 50 \div (-5) \)[/tex]
To solve [tex]\( 50 \div (-5) \)[/tex]:
- Dividing a positive number by a negative number gives a negative result.
- [tex]\( \frac{50}{-5} = -10 \)[/tex]
So, [tex]\( 50 \div (-5) = -10.0 \)[/tex]
### d. [tex]\( 13 \div (-2 + 1) \)[/tex]
To solve [tex]\( 13 \div (-2 + 1) \)[/tex]:
- First, solve the expression in the denominator, [tex]\((-2 + 1)\)[/tex].
[tex]\( -2 + 1 = -1 \)[/tex]
- Dividing by a negative number gives a negative result.
- [tex]\( \frac{13}{-1} = -13 \)[/tex]
So, [tex]\( 13 \div (-2 + 1) = -13.0 \)[/tex]
### e. [tex]\( (-36) \div (-9) \)[/tex]
To solve [tex]\( (-36) \div (-9) \)[/tex]:
- Dividing a negative number by a negative number gives a positive result.
- [tex]\( \frac{-36}{-9} = 4 \)[/tex]
So, [tex]\( (-36) \div (-9) = 4.0 \)[/tex]
### f. [tex]\( -36 \div 12 \)[/tex]
To solve [tex]\( -36 \div 12 \)[/tex]:
- Dividing a negative number by a positive number gives a negative result.
- [tex]\( \frac{-36}{12} = -3 \)[/tex]
So, [tex]\( -36 \div 12 = -3.0 \)[/tex]
### g. [tex]\( 0 \div (-12) \)[/tex]
To solve [tex]\( 0 \div (-12) \)[/tex]:
- Dividing zero by any non-zero number always gives zero.
- [tex]\( \frac{0}{-12} = 0 \)[/tex]
So, [tex]\( 0 \div (-12) = -0.0 \)[/tex]
### h. [tex]\( (-6 + 3) \div (-2 + 1) \)[/tex]
To solve [tex]\( (-6 + 3) \div (-2 + 1) \)[/tex]:
- First, solve the expressions inside the parentheses.
[tex]\( -6 + 3 = -3 \)[/tex] and [tex]\( -2 + 1 = -1 \)[/tex]
- Next, divide [tex]\( -3 \)[/tex] by [tex]\( -1 \)[/tex].
- Dividing a negative number by a negative number gives a positive result.
- [tex]\( \frac{-3}{-1} = 3 \)[/tex]
So, [tex]\( (-6 + 3) \div (-2 + 1) = 3.0 \)[/tex]
In summary:
- [tex]\( (-30) \div 10 = -3.0 \)[/tex]
- [tex]\( (-49) \div 49 = -1.0 \)[/tex]
- [tex]\( 50 \div (-5) = -10.0 \)[/tex]
- [tex]\( 13 \div (-2 + 1) = -13.0 \)[/tex]
- [tex]\( (-36) \div (-9) = 4.0 \)[/tex]
- [tex]\( -36 \div 12 = -3.0 \)[/tex]
- [tex]\( 0 \div (-12) = -0.0 \)[/tex]
- [tex]\( (-6 + 3) \div (-2 + 1) = 3.0 \)[/tex]
### a. [tex]\( (-30) \div 10 \)[/tex]
To solve [tex]\( (-30) \div 10 \)[/tex]:
- Dividing a negative number by a positive number gives a negative result.
- [tex]\( \frac{-30}{10} = -3 \)[/tex]
So, [tex]\( (-30) \div 10 = -3.0 \)[/tex]
### b. [tex]\( (-49) \div 49 \)[/tex]
To solve [tex]\( (-49) \div 49 \)[/tex]:
- Dividing a negative number by a positive number gives a negative result.
- [tex]\( \frac{-49}{49} = -1 \)[/tex]
So, [tex]\( (-49) \div 49 = -1.0 \)[/tex]
### c. [tex]\( 50 \div (-5) \)[/tex]
To solve [tex]\( 50 \div (-5) \)[/tex]:
- Dividing a positive number by a negative number gives a negative result.
- [tex]\( \frac{50}{-5} = -10 \)[/tex]
So, [tex]\( 50 \div (-5) = -10.0 \)[/tex]
### d. [tex]\( 13 \div (-2 + 1) \)[/tex]
To solve [tex]\( 13 \div (-2 + 1) \)[/tex]:
- First, solve the expression in the denominator, [tex]\((-2 + 1)\)[/tex].
[tex]\( -2 + 1 = -1 \)[/tex]
- Dividing by a negative number gives a negative result.
- [tex]\( \frac{13}{-1} = -13 \)[/tex]
So, [tex]\( 13 \div (-2 + 1) = -13.0 \)[/tex]
### e. [tex]\( (-36) \div (-9) \)[/tex]
To solve [tex]\( (-36) \div (-9) \)[/tex]:
- Dividing a negative number by a negative number gives a positive result.
- [tex]\( \frac{-36}{-9} = 4 \)[/tex]
So, [tex]\( (-36) \div (-9) = 4.0 \)[/tex]
### f. [tex]\( -36 \div 12 \)[/tex]
To solve [tex]\( -36 \div 12 \)[/tex]:
- Dividing a negative number by a positive number gives a negative result.
- [tex]\( \frac{-36}{12} = -3 \)[/tex]
So, [tex]\( -36 \div 12 = -3.0 \)[/tex]
### g. [tex]\( 0 \div (-12) \)[/tex]
To solve [tex]\( 0 \div (-12) \)[/tex]:
- Dividing zero by any non-zero number always gives zero.
- [tex]\( \frac{0}{-12} = 0 \)[/tex]
So, [tex]\( 0 \div (-12) = -0.0 \)[/tex]
### h. [tex]\( (-6 + 3) \div (-2 + 1) \)[/tex]
To solve [tex]\( (-6 + 3) \div (-2 + 1) \)[/tex]:
- First, solve the expressions inside the parentheses.
[tex]\( -6 + 3 = -3 \)[/tex] and [tex]\( -2 + 1 = -1 \)[/tex]
- Next, divide [tex]\( -3 \)[/tex] by [tex]\( -1 \)[/tex].
- Dividing a negative number by a negative number gives a positive result.
- [tex]\( \frac{-3}{-1} = 3 \)[/tex]
So, [tex]\( (-6 + 3) \div (-2 + 1) = 3.0 \)[/tex]
In summary:
- [tex]\( (-30) \div 10 = -3.0 \)[/tex]
- [tex]\( (-49) \div 49 = -1.0 \)[/tex]
- [tex]\( 50 \div (-5) = -10.0 \)[/tex]
- [tex]\( 13 \div (-2 + 1) = -13.0 \)[/tex]
- [tex]\( (-36) \div (-9) = 4.0 \)[/tex]
- [tex]\( -36 \div 12 = -3.0 \)[/tex]
- [tex]\( 0 \div (-12) = -0.0 \)[/tex]
- [tex]\( (-6 + 3) \div (-2 + 1) = 3.0 \)[/tex]