Complete the table below.

a) Complete the table for the given values.

b) Using a scale of [tex]2 \, \text{cm}[/tex] on the x-axis and [tex]2 \, \text{cm}[/tex] to [tex]10 \, \text{units}[/tex] on the y-axis, draw the graph of the relation [tex]y = 2x^2 - 5x + 1[/tex] for [tex]-3 \leq x \leq 5[/tex].

c) On the same axes, draw the graph of [tex]y = x + 6[/tex].

d) From your graphs, estimate the least value of [tex]y[/tex] and the corresponding value of [tex]x[/tex].

e) Also, from the graph, find the solution of the equation [tex]2x^2 - 5x + 1 = 0[/tex].



Answer :

Alright, let's walk through the steps to solve this problem!

### Part (a) Completing the Table

We need to calculate the values of [tex]\( y \)[/tex] for the quadratic equation [tex]\( y = 2x^2 - 5x + 1 \)[/tex] at each given [tex]\( x \)[/tex] from [tex]\(-3\)[/tex] to [tex]\(5\)[/tex].

Here is the completed table for the values of [tex]\( y \)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & y = 2x^2 - 5x + 1 \\ \hline -3 & 34 \\ -2 & 19 \\ -1 & 8 \\ 0 & 1 \\ 1 & -2 \\ 2 & -1 \\ 3 & 4 \\ 4 & 13 \\ 5 & 26 \\ \hline \end{array} \][/tex]

### Part (b) Drawing the Graph

To draw the graph, we would typically use a graph paper with the given scales.

- X-axis scale: [tex]\(2 \text{ cm}\)[/tex] per unit.
- Y-axis scale: [tex]\(2 \text{ cm}\)[/tex] for [tex]\(10 \text{ units}\)[/tex], simplifying to [tex]\(0.2 \text{ cm}\)[/tex] per unit.

By plotting each point from the table above on the graph paper and connecting them smoothly, we obtain the parabola representing [tex]\( y = 2x^2 - 5x + 1 \)[/tex].

### Part (c) Drawing the Graph of [tex]\( y = x + 6 \)[/tex]

Next, we plot the graph of the linear equation [tex]\( y = x + 6 \)[/tex].

Here is the table of values for [tex]\( y \)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & y = x + 6 \\ \hline -3 & 3 \\ -2 & 4 \\ -1 & 5 \\ 0 & 6 \\ 1 & 7 \\ 2 & 8 \\ 3 & 9 \\ 4 & 10 \\ 5 & 11 \\ \hline \end{array} \][/tex]

Plot these points on the same graph and draw a straight line through them to represent [tex]\( y = x + 6 \)[/tex].

### Part (d) Estimating the Least Value of [tex]\( y \)[/tex] and Corresponding [tex]\( x \)[/tex]

From the quadratic graph [tex]\( y = 2x^2 - 5x + 1 \)[/tex], we can see that the minimum value of [tex]\( y \)[/tex] is:

[tex]\[ \text{Minimum } y = -2 \quad \text{when } x = 1 \][/tex]

### Solving the Equation [tex]\( 2x^2 - 5x + 1 = x + 6 \)[/tex]

To solve the equation for points of intersection:

[tex]\[ 2x^2 - 5x + 1 = x + 6 \][/tex]

Rearrange to form a quadratic equation:

[tex]\[ 2x^2 - 6x - 5 = 0 \][/tex]

The solutions for [tex]\( x \)[/tex] (i.e., the roots of the quadratic equation) are:

[tex]\[ x \approx 3.679 \quad \text{and} \quad x \approx -0.679 \][/tex]

Thus, the solutions to the equation [tex]\( 2x^2 - 5x + 1 = x + 6 \)[/tex] are approximately [tex]\( x = 3.679 \)[/tex] and [tex]\( x = -0.679 \)[/tex].

This completes the detailed step-by-step solution.