Given [tex]y=(2x+3)^2[/tex], choose the standard form of the given quadratic equation.

A. [tex]0 = 25x^2[/tex]
B. [tex]0 = 4x^2 + 9[/tex]
C. [tex]0 = 4x^2 + 10x + 6[/tex]
D. [tex]0 = 4x^2 + 12x + 9[/tex]



Answer :

To transform the quadratic equation [tex]\(y = (2x + 3)^2\)[/tex] into its standard form, we need to expand the expression [tex]\((2x + 3)^2\)[/tex].

Here are the steps to do this:

1. Start with the given equation:
[tex]\[ y = (2x + 3)^2 \][/tex]

2. To expand [tex]\((2x + 3)^2\)[/tex], use the binomial theorem [tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex], where [tex]\(a = 2x\)[/tex] and [tex]\(b = 3\)[/tex].

3. Apply the binomial theorem:
[tex]\[ (2x + 3)^2 = (2x)^2 + 2 \cdot (2x) \cdot 3 + 3^2 \][/tex]

4. Calculate each term:
[tex]\[ (2x)^2 = 4x^2 \][/tex]
[tex]\[ 2 \cdot (2x) \cdot 3 = 12x \][/tex]
[tex]\[ 3^2 = 9 \][/tex]

5. Combine all the terms:
[tex]\[ (2x + 3)^2 = 4x^2 + 12x + 9 \][/tex]

6. Set [tex]\(y = (2x + 3)^2\)[/tex] to [tex]\(0\)[/tex] to find the standard form of the quadratic equation:
[tex]\[ y = 4x^2 + 12x + 9 \][/tex]

Therefore, the standard form of the given quadratic equation is:
[tex]\[ 0 = 4x^2 + 12x + 9 \][/tex]

So, the correct choice is:
[tex]\[ 0 = 4 x^2 + 12 x + 9 \][/tex]