Compare [tex]\sqrt{18}[/tex] and [tex]\frac{23}{5}[/tex] using [tex]\ \textgreater \ ,\ \textless \ , \text{or } =[/tex].

A. [tex]\frac{23}{5} \ \textless \ \sqrt{18}[/tex]
B. [tex]\frac{23}{5} = \sqrt{18}[/tex]
C. [tex]\sqrt{18} \ \textgreater \ \frac{23}{5}[/tex]
D. [tex]\sqrt{18} \ \textless \ \frac{23}{5}[/tex]



Answer :

To compare [tex]\(\sqrt{18}\)[/tex] and [tex]\(\frac{23}{5}\)[/tex], let’s proceed with the calculations step-by-step.

1. Calculating [tex]\(\sqrt{18}\)[/tex]:

The square root of 18 can be determined. The value of [tex]\(\sqrt{18}\)[/tex] is approximately:
[tex]\[ \sqrt{18} \approx 4.242640687119285 \][/tex]

2. Calculating [tex]\(\frac{23}{5}\)[/tex]:

Next, we divide 23 by 5. The value of [tex]\(\frac{23}{5}\)[/tex] is:
[tex]\[ \frac{23}{5} = 4.6 \][/tex]

3. Comparing [tex]\(\sqrt{18}\)[/tex] and [tex]\(\frac{23}{5}\)[/tex]:

We now compare the two values obtained:
[tex]\[ 4.242640687119285 \quad \text{and} \quad 4.6 \][/tex]

Clearly, [tex]\(4.242640687119285 < 4.6\)[/tex].

Therefore, [tex]\(\sqrt{18} < \frac{23}{5}\)[/tex].

Thus, the correct comparison is:
[tex]\[ \sqrt{18} < \frac{23}{5} \][/tex]