Select the correct answer.

Simplify the following expression.
[tex]3^{\frac{11}{5}} \div 3^{-\frac{9}{5}}[/tex]

A. [tex]\frac{1}{12}[/tex]
B. [tex]\frac{1}{81}[/tex]
C. 81
D. 12



Answer :

To simplify the expression [tex]\( 3^{\frac{11}{5}} \div 3^{-\frac{9}{5}} \)[/tex], we can use the properties of exponents. Specifically, we will use the property that states:

[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]

In this case, our base [tex]\(a\)[/tex] is [tex]\(3\)[/tex], [tex]\(m\)[/tex] is [tex]\(\frac{11}{5}\)[/tex], and [tex]\(n\)[/tex] is [tex]\(-\frac{9}{5}\)[/tex]. Applying the property, we get:

[tex]\[ 3^{\frac{11}{5}} \div 3^{-\frac{9}{5}} = 3^{\frac{11}{5} - (-\frac{9}{5})} \][/tex]

Simplify the exponent:

[tex]\[ \frac{11}{5} - (-\frac{9}{5}) = \frac{11}{5} + \frac{9}{5} \][/tex]

Since the denominators are the same, just add the numerators:

[tex]\[ \frac{11}{5} + \frac{9}{5} = \frac{11 + 9}{5} = \frac{20}{5} = 4 \][/tex]

So the expression simplifies to:

[tex]\[ 3^4 \][/tex]

Now, calculate [tex]\(3^4\)[/tex]:

[tex]\[ 3^4 = 3 \times 3 \times 3 \times 3 = 81 \][/tex]

Therefore, the simplified value of [tex]\( 3^{\frac{11}{5}} \div 3^{-\frac{9}{5}} \)[/tex] is [tex]\(81\)[/tex].

The correct answer is [tex]\( \boxed{81} \)[/tex].