Consider this system of equations:

[tex]\[
\begin{array}{l}
y = -\frac{1}{2} x + 2.5 \\
y = 2x - 5
\end{array}
\][/tex]

Use the graph to determine the solution to the system of equations. What is the solution?

A. [tex]\((-5, 0)\)[/tex]

B. [tex]\((2, 0)\)[/tex]

C. [tex]\((3, 1)\)[/tex]

D. [tex]\((4, 3)\)[/tex]



Answer :

Certainly! Let's solve the system of equations to determine the solution:

[tex]\[ \begin{array}{l} y = -\frac{1}{2} x + 2.5 \\ y = 2 x - 5 \end{array} \][/tex]

To find the point where these two lines intersect, we need to set the equations equal to each other and solve for [tex]\( x \)[/tex].

1. Set the two equations equal to each other:

[tex]\[ -\frac{1}{2} x + 2.5 = 2 x - 5 \][/tex]

2. Combine like terms to solve for [tex]\( x \)[/tex]:

First, get all [tex]\( x \)[/tex]-terms on one side of the equation and all constants on the other side:

[tex]\[ -\frac{1}{2} x - 2 x = -5 - 2.5 \][/tex]

Simplify the left and right sides:

[tex]\[ -\frac{1}{2} x - 2 x = -\frac{1}{2} x - 2 x = -2.5 x \][/tex]

[tex]\[ -5 - 2.5 = -7.5 \][/tex]

So we have:
[tex]\[ -2.5 x = -7.5 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{-7.5}{-2.5} = 3 \][/tex]

4. Substitute [tex]\( x = 3 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use the second equation:

[tex]\[ y = 2 x - 5 \][/tex]

[tex]\[ y = 2(3) - 5 \][/tex]

[tex]\[ y = 6 - 5 \][/tex]

[tex]\[ y = 1 \][/tex]

Therefore, the solution to the system of equations is [tex]\((x, y) = (3, 1)\)[/tex].

So, the correct solution is:

[tex]\((3, 1)\)[/tex]