The table represents a linear function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-2 & 8 \\
\hline
-1 & 2 \\
\hline
0 & -4 \\
\hline
1 & -10 \\
\hline
2 & -16 \\
\hline
\end{tabular}

What is the slope of the function?

A. [tex]$-6$[/tex]
B. [tex]$-4$[/tex]
C. [tex]$4$[/tex]
D. [tex]$6$[/tex]



Answer :

To determine the slope of the linear function from the given table, we use the formula for the slope of a line passing through two points, which is:

[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} \][/tex]

Where [tex]\(\Delta y\)[/tex] is the change in the [tex]\(y\)[/tex]-coordinates (outputs) and [tex]\(\Delta x\)[/tex] is the change in the [tex]\(x\)[/tex]-coordinates (inputs).

Here is the table for reference:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 8 \\ \hline -1 & 2 \\ \hline 0 & -4 \\ \hline 1 & -10 \\ \hline 2 & -16 \\ \hline \end{array} \][/tex]

Let's consider the first two points in the table to find the changes in [tex]\(y\)[/tex] and [tex]\(x\)[/tex]:
- Point 1: [tex]\((-2, 8)\)[/tex]
- Point 2: [tex]\((-1, 2)\)[/tex]

Calculate the change in [tex]\(y\)[/tex] ([tex]\(\Delta y\)[/tex]):
[tex]\[ \Delta y = y_2 - y_1 = 2 - 8 = -6 \][/tex]

Calculate the change in [tex]\(x\)[/tex] ([tex]\(\Delta x\)[/tex]):
[tex]\[ \Delta x = x_2 - x_1 = -1 - (-2) = -1 + 2 = 1 \][/tex]

Now, we can find the slope by dividing the change in [tex]\(y\)[/tex] by the change in [tex]\(x\)[/tex]:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} = \frac{-6}{1} = -6 \][/tex]

Thus, the slope of the function is:
[tex]\[ -6 \][/tex]

Among the given options, the correct answer is:
[tex]\[ \boxed{-6} \][/tex]