A regular octagon has an apothem measuring [tex][tex]$10 \, \text{in}$[/tex][/tex] and a perimeter of [tex][tex]$66.3 \, \text{in}$[/tex][/tex].

What is the area of the octagon, rounded to the nearest square inch?

A. [tex]88 \, \text{in}^2[/tex]
B. [tex]175 \, \text{in}^2[/tex]
C. [tex]332 \, \text{in}^2[/tex]
D. [tex]700 \, \text{in}^2[/tex]



Answer :

To determine the area of a regular octagon given the measurements of its apothem and its perimeter, we can use the formula for the area of a regular polygon. The formula is:

[tex]\[ \text{Area} = \frac{1}{2} \times \text{apothem} \times \text{perimeter} \][/tex]

Here are the given values:
- Apothem ([tex]\( a \)[/tex]) = 10 inches
- Perimeter ([tex]\( P \)[/tex]) = 66.3 inches

Now, plug these values into the formula to find the area:

[tex]\[ \text{Area} = \frac{1}{2} \times 10 \times 66.3 \][/tex]

First, calculate the product of the apothem and the perimeter:

[tex]\[ 10 \times 66.3 = 663 \][/tex]

Then, multiply this product by [tex]\( \frac{1}{2} \)[/tex]:

[tex]\[ \text{Area} = \frac{1}{2} \times 663 = 331.5 \text{ square inches} \][/tex]

Finally, round the area to the nearest square inch:

[tex]\[ \text{Area} \approx 332 \text{ square inches} \][/tex]

Therefore, the area of the octagon, rounded to the nearest square inch, is 332 square inches.

The correct answer is:

[tex]\[ \boxed{332} \][/tex]