Triangle [tex]\( PQR \)[/tex] has vertices [tex]\( P(-2,6), Q(-8,4) \)[/tex], and [tex]\( R(1,-2) \)[/tex]. It is translated according to the rule [tex]\( (x, y) \rightarrow (x-2, y-16) \)[/tex].

What is the [tex]\( y \)[/tex]-value of [tex]\( P' \)[/tex]?

A. [tex]\(-18\)[/tex]
B. [tex]\(-16\)[/tex]
C. [tex]\(-12\)[/tex]
D. [tex]\(-10\)[/tex]



Answer :

To find the [tex]\( y \)[/tex]-value of the translated point [tex]\( P' \)[/tex] of vertex [tex]\( P \)[/tex] after applying the translation rule, follow these steps:

1. Identify the coordinates of point [tex]\( P \)[/tex]:
The coordinates of point [tex]\( P \)[/tex] are given as [tex]\( P(-2, 6) \)[/tex].

2. Understand the translation rule:
The rule for translation is given as [tex]\( (x, y) \rightarrow (x - 2, y - 16) \)[/tex].

3. Apply the translation rule to point [tex]\( P \)[/tex]:
- For the [tex]\( x \)[/tex]-coordinate of [tex]\( P \)[/tex], which is [tex]\(-2\)[/tex]:
[tex]\[ x_{\text{new}} = -2 - 2 = -4 \][/tex]
- For the [tex]\( y \)[/tex]-coordinate of [tex]\( P \)[/tex], which is [tex]\( 6 \)[/tex]:
[tex]\[ y_{\text{new}} = 6 - 16 = -10 \][/tex]

4. Determine the translated coordinates of [tex]\( P' \)[/tex]:
After applying the translation rule, the coordinates of [tex]\( P \)[/tex] change to [tex]\( P'(-4, -10) \)[/tex].

5. Extract the [tex]\( y \)[/tex]-value of [tex]\( P' \)[/tex]:
The [tex]\( y \)[/tex]-value of the translated point [tex]\( P' \)[/tex] is [tex]\(-10\)[/tex].

Therefore, the [tex]\( y \)[/tex]-value of [tex]\( P' \)[/tex] is [tex]\(\boxed{-10}\)[/tex].