Answer :
To solve the equation [tex]\( 5c - 2 = 3c \)[/tex] and then find the value of [tex]\( 24c \)[/tex], we'll go through a step-by-step solution.
Step 1: Isolate the variable [tex]\( c \)[/tex]
We start with the given equation:
[tex]\[ 5c - 2 = 3c \][/tex]
First, subtract [tex]\( 3c \)[/tex] from both sides of the equation to get all the [tex]\( c \)[/tex] terms on one side:
[tex]\[ 5c - 3c - 2 = 3c - 3c \][/tex]
[tex]\[ 2c - 2 = 0 \][/tex]
Next, add 2 to both sides to isolate the term with [tex]\( c \)[/tex]:
[tex]\[ 2c - 2 + 2 = 0 + 2 \][/tex]
[tex]\[ 2c = 2 \][/tex]
Then, divide both sides by 2 to solve for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{2}{2} \][/tex]
[tex]\[ c = 1 \][/tex]
Step 2: Calculate [tex]\( 24c \)[/tex]
Now that we have [tex]\( c = 1 \)[/tex], we can find [tex]\( 24c \)[/tex] by multiplying [tex]\( c \)[/tex] by 24:
[tex]\[ 24c = 24 \times 1 = 24 \][/tex]
So, the value of [tex]\( 24c \)[/tex] is [tex]\( \boxed{24} \)[/tex].
Step 1: Isolate the variable [tex]\( c \)[/tex]
We start with the given equation:
[tex]\[ 5c - 2 = 3c \][/tex]
First, subtract [tex]\( 3c \)[/tex] from both sides of the equation to get all the [tex]\( c \)[/tex] terms on one side:
[tex]\[ 5c - 3c - 2 = 3c - 3c \][/tex]
[tex]\[ 2c - 2 = 0 \][/tex]
Next, add 2 to both sides to isolate the term with [tex]\( c \)[/tex]:
[tex]\[ 2c - 2 + 2 = 0 + 2 \][/tex]
[tex]\[ 2c = 2 \][/tex]
Then, divide both sides by 2 to solve for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{2}{2} \][/tex]
[tex]\[ c = 1 \][/tex]
Step 2: Calculate [tex]\( 24c \)[/tex]
Now that we have [tex]\( c = 1 \)[/tex], we can find [tex]\( 24c \)[/tex] by multiplying [tex]\( c \)[/tex] by 24:
[tex]\[ 24c = 24 \times 1 = 24 \][/tex]
So, the value of [tex]\( 24c \)[/tex] is [tex]\( \boxed{24} \)[/tex].