In the [tex]$xy$[/tex]-plane, what is the [tex]$y$[/tex]-intercept of the graph of the equation [tex]$y=6\left(x-\frac{1}{2}\right)(x+3)$[/tex]?

A. [tex]$-9$[/tex]
B. [tex]$-\frac{1}{2}$[/tex]
C. 3
D. 9



Answer :

To determine the [tex]\( y \)[/tex]-intercept of the graph of the equation [tex]\( y = 6 \left( x - \frac{1}{2} \right) (x + 3) \)[/tex], you need to find the value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex].

Here are the steps:

1. Start with the given equation:
[tex]\[ y = 6 \left( x - \frac{1}{2} \right) (x + 3) \][/tex]

2. Substitute [tex]\( x = 0 \)[/tex] into the equation to find the [tex]\( y \)[/tex]-intercept:
[tex]\[ y = 6 \left( 0 - \frac{1}{2} \right) (0 + 3) \][/tex]

3. Simplify the expression inside the parentheses:
[tex]\[ y = 6 \left( -\frac{1}{2} \right) (3) \][/tex]

4. Perform the multiplications:
[tex]\[ y = 6 \cdot \left( -\frac{1}{2} \cdot 3 \right) \][/tex]
[tex]\[ y = 6 \cdot \left( -\frac{3}{2} \right) \][/tex]

5. Multiply the constants:
[tex]\[ y = 6 \cdot -\frac{3}{2} = -9 \][/tex]

Therefore, the [tex]\( y \)[/tex]-intercept of the graph of the equation [tex]\( y = 6 \left( x - \frac{1}{2} \right) (x + 3) \)[/tex] is [tex]\(-9\)[/tex].

Thus, the correct answer is:
[tex]\[ -9 \][/tex]