Which of the following is a solution for the inequality [tex]2x \ \textless \ 9[/tex]?

A. [tex]x = 5.5[/tex]
B. [tex]x = 4.5[/tex]
C. [tex]x = 6[/tex]
D. [tex]x = 4[/tex]



Answer :

To determine which values of [tex]\( x \)[/tex] satisfy the inequality [tex]\( 2x < 9 \)[/tex], we will evaluate the inequality for each given value of [tex]\( x \)[/tex].

1. For [tex]\( x = 5.5 \)[/tex]:
[tex]\[ 2 \cdot 5.5 = 11 \][/tex]
Since [tex]\( 11 \)[/tex] is not less than [tex]\( 9 \)[/tex], [tex]\( x = 5.5 \)[/tex] does not satisfy the inequality [tex]\( 2x < 9 \)[/tex].

2. For [tex]\( x = 4.5 \)[/tex]:
[tex]\[ 2 \cdot 4.5 = 9 \][/tex]
Since [tex]\( 9 \)[/tex] is not less than [tex]\( 9 \)[/tex], [tex]\( x = 4.5 \)[/tex] does not satisfy the inequality [tex]\( 2x < 9 \)[/tex].

3. For [tex]\( x = 6 \)[/tex]:
[tex]\[ 2 \cdot 6 = 12 \][/tex]
Since [tex]\( 12 \)[/tex] is not less than [tex]\( 9 \)[/tex], [tex]\( x = 6 \)[/tex] does not satisfy the inequality [tex]\( 2x < 9 \)[/tex].

4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ 2 \cdot 4 = 8 \][/tex]
Since [tex]\( 8 \)[/tex] is less than [tex]\( 9 \)[/tex], [tex]\( x = 4 \)[/tex] does satisfy the inequality [tex]\( 2x < 9 \)[/tex].

Therefore, among the given values, the only value that is a solution to the inequality [tex]\( 2x < 9 \)[/tex] is [tex]\( x = 4 \)[/tex].