Answered

Question 10 of 10

A [tex]4 \, \text{kg}[/tex] book and a [tex]7 \, \text{kg}[/tex] lamp are both in the living room. If the force of gravity between them is [tex]2.99 \times 10^{-10} \, \text{N}[/tex], how far apart are they?

A. [tex]1.85 \, \text{m}[/tex]

B. [tex]2.12 \, \text{m}[/tex]

C. [tex]2.50 \, \text{m}[/tex]

D. [tex]6.38 \, \text{m}[/tex]



Answer :

To determine how far apart the [tex]$4\, \text{kg}$[/tex] book and the [tex]$7\, \text{kg}$[/tex] lamp are, given that the gravitational force between them is [tex]$2.99 \times 10^{-10}\, \text{N}$[/tex], we will use the formula for gravitational force:

[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]

where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\( 6.67430 \times 10^{-11}\, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the book [tex]\( 4\, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is the mass of the lamp [tex]\( 7\, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the distance between the book and the lamp.

First, we will rearrange the formula to solve for [tex]\( r \)[/tex]:

[tex]\[ r = \sqrt{\frac{G m_1 m_2}{F}} \][/tex]

Now, substitute the given values into the equation:

[tex]\[ r = \sqrt{\frac{(6.67430 \times 10^{-11}\, \text{m}^3 \text{kg}^{-1} \text{s}^{-2})(4 \, \text{kg})(7 \, \text{kg})}{2.99 \times 10^{-10} \, \text{N}}} \][/tex]

Performing the calculation:

[tex]\[ r = \sqrt{\frac{(6.67430 \times 10^{-11})(4)(7)}{2.99 \times 10^{-10}}} \][/tex]

[tex]\[ r \approx 2.50 \, \text{m} \][/tex]

Thus, the distance between the book and the lamp is approximately [tex]\( 2.50 \, \text{m} \)[/tex].

Therefore, the correct answer is:

C. [tex]\( 2.50 \, \text{m} \)[/tex]