Which equation shows how to calculate how many grams [tex]$( g )$[/tex] of [tex]$Mg ( OH )_2$[/tex] would be produced from [tex]$4 \, \text{mol} \, KOH$[/tex]? The balanced reaction is:
[tex]\[ MgCl_2 + 2 \, KOH \rightarrow Mg(OH)_2 + 2 \, KCl \][/tex]
A. [tex]\(\frac{4 \, \text{mol} \, KOH}{1} \times \frac{2 \, \text{mol} \, KOH}{1 \, \text{mol} \, Mg(OH)_2} \times \frac{56.10 \, \text{g} \, KOH}{1 \, \text{mol} \, KOH}\)[/tex]
B. [tex]\(\frac{4 \, \text{mol} \, KOH}{1} \times \frac{1 \, \text{mol} \, Mg(OH)_2}{1 \, \text{mol} \, KOH} \times \frac{58.31 \, \text{g} \, Mg(OH)_2}{1 \, \text{mol} \, Mg(OH)_2}\)[/tex]
C. [tex]\(\frac{4 \, \text{mol} \, KOH}{1} \times \frac{1 \, \text{mol} \, Mg(OH)_2}{2 \, \text{mol} \, KOH} \times \frac{58.31 \, \text{g} \, Mg(OH)_2}{1 \, \text{mol} \, Mg(OH)_2}\)[/tex]
D. [tex]\(\frac{4 \, \text{mol} \, KOH}{1} \times \frac{2 \, \text{mol} \, Mg(OH)_2}{1 \, \text{mol} \, KOH} \times \frac{58.31 \, \text{g} \, Mg(OH)_2}{1 \, \text{mol} \, Mg(OH)_2}\)[/tex]