A rectangle is transformed according to the rule [tex][tex]$R_{0,90^{\circ}}$[/tex][/tex]. The image of the rectangle has vertices located at [tex][tex]$R^{\prime}(-4,4)$[/tex][/tex], [tex][tex]$S^{\prime}(-4,1)$[/tex][/tex], [tex][tex]$P^{\prime}(-3,1)$[/tex][/tex], and [tex][tex]$Q^{\prime}(-3,4)$[/tex][/tex]. What is the location of [tex][tex]$Q$[/tex][/tex]?

A. [tex][tex]$(-4,-3)$[/tex][/tex]
B. [tex][tex]$(-3,-4)$[/tex][/tex]
C. [tex][tex]$(3,4)$[/tex][/tex]
D. [tex][tex]$(4,3)$[/tex][/tex]



Answer :

To determine the original coordinates of [tex]\( Q \)[/tex] given its transformed coordinates [tex]\( Q'(-3, 4) \)[/tex] under the rule [tex]\( R_{0,90^{\circ}} \)[/tex], let's carefully follow these steps:

1. Understand the Transformation Rule:
The rule [tex]\( R_{0,90^{\circ}} \)[/tex] indicates a rotation of 90 degrees counterclockwise around the origin.

2. Inverse Transformation:
To find the original coordinates before the rotation, we perform the inverse of 90 degrees counterclockwise rotation, which is a 90-degree clockwise rotation.

3. Apply the Inverse Rotation:
- When a point [tex]\( (Q'_x, Q'_y) \)[/tex] is rotated 90 degrees clockwise, the new coordinates [tex]\( (Q_x, Q_y) \)[/tex] are calculated as follows:
[tex]\[ Q_x = Q'_y \][/tex]
[tex]\[ Q_y = -Q'_x \][/tex]

4. Given Coordinates of [tex]\( Q' \)[/tex]:
The coordinates of [tex]\( Q' \)[/tex] are [tex]\( (-3, 4) \)[/tex]. Let's substitute these values into the inverse rotation formulas:
[tex]\[ Q_x = Q'_y = 4 \][/tex]
[tex]\[ Q_y = -Q'_x = -(-3) = 3 \][/tex]

5. Determine the Coordinates:
Therefore, the coordinates of [tex]\( Q \)[/tex] are [tex]\( (4, 3) \)[/tex].

Hence, the location of [tex]\( Q \)[/tex] is [tex]\( (4, 3) \)[/tex].

The correct answer is:
[tex]\[ (4, 3) \][/tex]