Given [tex][tex]$n(x)=\frac{x}{2}+1$[/tex][/tex], what is the value of [tex][tex]$n(-8)$[/tex][/tex]?

A. [tex]-4[/tex]
B. [tex]-3[/tex]
C. [tex]12[/tex]
D. [tex]8[/tex]



Answer :

To determine the value of [tex]\( n(-8) \)[/tex] for the function [tex]\( n(x) = \frac{x}{2} + 1 \)[/tex], follow these steps:

1. Identify the function: [tex]\( n(x) = \frac{x}{2} + 1 \)[/tex].

2. Substitute [tex]\( x = -8 \)[/tex] into the function:
[tex]\[ n(-8) = \frac{-8}{2} + 1 \][/tex]

3. Simplify the expression within the function:
[tex]\[ \frac{-8}{2} = -4 \][/tex]

4. Add 1 to the result:
[tex]\[ -4 + 1 = -3 \][/tex]

Therefore, the value of [tex]\( n(-8) \)[/tex] is:
[tex]\[ -3 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{-3} \][/tex]