Answer :

Sure, let's solve this step by step.

1. Let's denote the smaller number as [tex]\( x \)[/tex] and the larger number as [tex]\( y \)[/tex].

2. According to the problem, we have the first condition:
[tex]\[ y = x + 6 \][/tex]
This means the larger number [tex]\( y \)[/tex] is 6 more than the smaller number [tex]\( x \)[/tex].

3. The second condition given in the problem is:
[tex]\[ 7x = 10y \][/tex]
This means 7 times the smaller number [tex]\( x \)[/tex] equals 10 times the larger number [tex]\( y \)[/tex].

4. Now we can use these two equations to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex].

5. From the first equation, we can express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = x + 6 \][/tex]

6. Substitute this expression for [tex]\( y \)[/tex] into the second equation:
[tex]\[ 7x = 10(x + 6) \][/tex]

7. Now, simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 7x = 10x + 60 \][/tex]
[tex]\[ 7x - 10x = 60 \][/tex]
[tex]\[ -3x = 60 \][/tex]
[tex]\[ x = -20 \][/tex]

8. Now that we have [tex]\( x \)[/tex], we can find [tex]\( y \)[/tex] using the first equation:
[tex]\[ y = x + 6 \][/tex]
[tex]\[ y = -20 + 6 \][/tex]
[tex]\[ y = -14 \][/tex]

So, the two numbers are:
- The smaller number [tex]\( x \)[/tex] is -20
- The larger number [tex]\( y \)[/tex] is -14