If [tex][tex]$h(x)=x^2-3$[/tex][/tex] and [tex][tex]$k(x)=5+x$[/tex][/tex], what is [tex][tex]$k(h(0))$[/tex][/tex]?

A. 2
B. 5
C. [tex]-3[/tex]
D. 0



Answer :

Sure, let's solve this step-by-step.

We are given two functions:
[tex]\[ h(x) = x^2 - 3 \][/tex]
[tex]\[ k(x) = 5 + x \][/tex]

We are asked to find [tex]\( k(h(0)) \)[/tex].

1. Calculate [tex]\( h(0) \)[/tex]:
[tex]\[ h(0) = 0^2 - 3 = -3 \][/tex]

2. Calculate [tex]\( k(h(0)) \)[/tex]:
First, substitute the result from [tex]\( h(0) \)[/tex] into [tex]\( k(x) \)[/tex]:
[tex]\[ k(h(0)) = k(-3) \][/tex]

Now, compute [tex]\( k(-3) \)[/tex]:
[tex]\[ k(-3) = 5 + (-3) = 2 \][/tex]

So, the value of [tex]\( k(h(0)) \)[/tex] is [tex]\(\boxed{2}\)[/tex].

Out of the given choices:
[tex]\[ 2, 5, -3, 0 \][/tex]

The correct answer is:
[tex]\[ 2 \][/tex]