Answer :

Of course! Let's expand the expression [tex]\((3x - 1)^3\)[/tex].

To expand [tex]\((a - b)^3\)[/tex], we can use the binomial theorem, which states:

[tex]\[ (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \][/tex]

In this case, [tex]\(a = 3x\)[/tex] and [tex]\(b = 1\)[/tex]. Let's substitute these values into the formula:

1. Compute [tex]\(a^3\)[/tex]:
[tex]\[ (3x)^3 = 27x^3 \][/tex]

2. Compute [tex]\(-3a^2b\)[/tex]:
[tex]\[ -3 \cdot (3x)^2 \cdot 1 = -3 \cdot 9x^2 \cdot 1 = -27x^2 \][/tex]

3. Compute [tex]\(3ab^2\)[/tex]:
[tex]\[ 3 \cdot (3x) \cdot 1^2 = 3 \cdot 3x \cdot 1 = 9x \][/tex]

4. Compute [tex]\(-b^3\)[/tex]:
[tex]\[ -1^3 = -1 \][/tex]

Now, combine all these results:
[tex]\[ 27x^3 - 27x^2 + 9x - 1 \][/tex]

Thus, the expanded form of [tex]\((3x - 1)^3\)[/tex] is:
[tex]\[ 27x^3 - 27x^2 + 9x - 1 \][/tex]