Jenna constructs a model to represent [tex][tex]$3x^2 + 11x - 4$[/tex][/tex]. What factors does Jenna need to model for the sides?

\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Factor 1} \\
\hline \multirow{5}{*}{\begin{tabular}{l}
-
\end{tabular}} & [tex]$+x^2$[/tex] & [tex]$+x^2$[/tex] & [tex]$+x^2$[/tex] & [tex]$-x$[/tex] \\
\hline & [tex]$+x$[/tex] & [tex]$+x$[/tex] & [tex]$+x$[/tex] & - \\
\hline & [tex]$+x$[/tex] & [tex]$+x$[/tex] & [tex]$+x$[/tex] & - \\
\hline & [tex]$+x$[/tex] & [tex]$+x$[/tex] & [tex]$+x$[/tex] & - \\
\hline & [tex]$+x$[/tex] & [tex]$+x$[/tex] & [tex]$+x$[/tex] & - \\
\hline
\end{tabular}

A. [tex][tex]$(3x + 1)$[/tex][/tex] and [tex][tex]$(x - 4)$[/tex][/tex]
B. [tex][tex]$(3x - 1)$[/tex][/tex] and [tex][tex]$(x + 4)$[/tex][/tex]
C. [tex][tex]$(3x - 2)$[/tex][/tex] and [tex][tex]$(x + 2)$[/tex][/tex]
D. [tex][tex]$(3x + 2)$[/tex][/tex] and [tex][tex]$(x - 2)$[/tex][/tex]



Answer :

To factor the quadratic polynomial [tex]\(3x^2 + 11x - 4\)[/tex], we need to express it as a product of two binomials. Let's break down the steps:

1. Identify a quadratic polynomial:
The given polynomial is [tex]\(3x^2 + 11x - 4\)[/tex].

2. Finding the factors:
We are looking for two binomials of the form [tex]\((ax + b)(cx + d)\)[/tex] such that when multiplied together, they yield the original polynomial.

3. Given Possible Factors:
- [tex]\((3x + 1)(x - 4)\)[/tex]
- [tex]\((3x - 1)(x + 4)\)[/tex]
- [tex]\((3x - 2)(x + 2)\)[/tex]
- [tex]\((3x + 2)(x - 2)\)[/tex]

4. Check each possible factorization:
- [tex]\((3x + 1)(x - 4)\)[/tex]:
Calculate it: [tex]\((3x + 1)(x - 4) = 3x^2 - 12x + x - 4 = 3x^2 - 11x - 4\)[/tex] which does not match the polynomial.

- [tex]\((3x - 1)(x + 4)\)[/tex]:
Calculate it: [tex]\((3x - 1)(x + 4) = 3x^2 + 12x - x - 4 = 3x^2 + 11x - 4\)[/tex] which matches the polynomial.

- [tex]\((3x - 2)(x + 2)\)[/tex]:
Calculate it: [tex]\((3x - 2)(x + 2) = 3x^2 + 6x - 2x - 4 = 3x^2 + 4x - 4\)[/tex] which does not match the polynomial.

- [tex]\((3x + 2)(x - 2)\)[/tex]:
Calculate it: [tex]\((3x + 2)(x - 2) = 3x^2 - 6x + 2x - 4 = 3x^2 - 4x - 4\)[/tex] which does not match the polynomial.

Based on the above verifications, the correct factorization of the quadratic polynomial [tex]\(3x^2 + 11x - 4\)[/tex] is:
[tex]\[ (3x - 1)(x + 4) \][/tex]

Therefore, the factors that Jenna needs to model for the sides are [tex]\((3x - 1)\)[/tex] and [tex]\((x + 4)\)[/tex].