Answer :
To solve the expression [tex]\(4 \times \frac{1}{3}\)[/tex], follow these steps:
1. Understand the Problem: The mathematical expression given is multiplying 4 by the fraction [tex]\(\frac{1}{3}\)[/tex]. Essentially, you are trying to find one-third of 4.
2. Rewrite the Multiplication: The expression [tex]\(4 \times \frac{1}{3}\)[/tex] can be understood as:
[tex]\[ \frac{4 \times 1}{3} \][/tex]
This is because multiplying by a fraction [tex]\(\frac{a}{b}\)[/tex] is the same as multiplying the numerator by [tex]\(a\)[/tex] and keeping the same denominator [tex]\(b\)[/tex].
3. Perform the Multiplication: Now, multiply the numerator:
[tex]\[ 4 \times 1 = 4 \][/tex]
4. Form the New Fraction: Place this result over the original denominator:
[tex]\[ \frac{4}{3} \][/tex]
5. Convert to Decimal (if preferred): Divide the numerator by the denominator to get:
[tex]\[ \frac{4}{3} = 1.3333333333333333 \][/tex]
Therefore, the result of the expression [tex]\(4 \times \frac{1}{3}\)[/tex] is:
[tex]\[ 1.3333333333333333 \][/tex]
1. Understand the Problem: The mathematical expression given is multiplying 4 by the fraction [tex]\(\frac{1}{3}\)[/tex]. Essentially, you are trying to find one-third of 4.
2. Rewrite the Multiplication: The expression [tex]\(4 \times \frac{1}{3}\)[/tex] can be understood as:
[tex]\[ \frac{4 \times 1}{3} \][/tex]
This is because multiplying by a fraction [tex]\(\frac{a}{b}\)[/tex] is the same as multiplying the numerator by [tex]\(a\)[/tex] and keeping the same denominator [tex]\(b\)[/tex].
3. Perform the Multiplication: Now, multiply the numerator:
[tex]\[ 4 \times 1 = 4 \][/tex]
4. Form the New Fraction: Place this result over the original denominator:
[tex]\[ \frac{4}{3} \][/tex]
5. Convert to Decimal (if preferred): Divide the numerator by the denominator to get:
[tex]\[ \frac{4}{3} = 1.3333333333333333 \][/tex]
Therefore, the result of the expression [tex]\(4 \times \frac{1}{3}\)[/tex] is:
[tex]\[ 1.3333333333333333 \][/tex]