Type the correct answer in each box. Use numerals instead of words.

Simplify the following polynomial expression.

[tex]\[
\left(5x^2 + 13x - 4\right) - \left(17x^2 + 7x - 19\right) + (5x - 7)(3x + 1)
\][/tex]

[tex]\[
\square x^2 - \square x + \square
\][/tex]



Answer :

To simplify the given polynomial expression:

[tex]\[ (5x^2 + 13x - 4) - (17x^2 + 7x - 19) + (5x - 7)(3x + 1) \][/tex]

we follow these steps:

1. Distribute the negative sign in the second polynomial:
[tex]\[ (5x^2 + 13x - 4) + (-17x^2 - 7x + 19) \][/tex]

2. Expand the product in the third term:
[tex]\[ (5x - 7)(3x + 1) = 5x \cdot 3x + 5x \cdot 1 - 7 \cdot 3x - 7 \cdot 1 = 15x^2 + 5x - 21x - 7 = 15x^2 - 16x - 7 \][/tex]

3. Combine all polynomials:
[tex]\[ (5x^2 + 13x - 4) + (-17x^2 - 7x + 19) + (15x^2 - 16x - 7) \][/tex]

4. Combine like terms:

- For [tex]\(x^2\)[/tex]-terms:
[tex]\[ 5x^2 - 17x^2 + 15x^2 = 3x^2 \][/tex]

- For [tex]\(x\)[/tex]-terms:
[tex]\[ 13x - 7x - 16x = -10x \][/tex]

- For constant terms:
[tex]\[ -4 + 19 - 7 = 8 \][/tex]

Therefore, the simplified expression is:

[tex]\[ 3x^2 - 10x + 8 \][/tex]

So, the correct answer in each box is:
[tex]\[ 3 \, x^2 - 10 \, x + 8 \][/tex]