What is the midpoint of the line segment with endpoints [tex]\((3.5, 2.2)\)[/tex] and [tex]\((1.5, -4.8)\)[/tex]?

A. [tex]\((5, -2.6)\)[/tex]
B. [tex]\((2.5, -1.3)\)[/tex]
C. [tex]\((2.5, -2.6)\)[/tex]
D. [tex]\((5, -1.3)\)[/tex]



Answer :

To find the midpoint of a line segment with given endpoints, you use the midpoint formula. The midpoint formula is:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the endpoints [tex]\((3.5, 2.2)\)[/tex] and [tex]\((1.5, -4.8)\)[/tex], we can identify our coordinates as:
- [tex]\(x_1 = 3.5\)[/tex]
- [tex]\(y_1 = 2.2\)[/tex]
- [tex]\(x_2 = 1.5\)[/tex]
- [tex]\(y_2 = -4.8\)[/tex]

Next, we substitute these values into the midpoint formula to find the midpoint coordinates:

For the x-coordinate:
[tex]\[ \frac{3.5 + 1.5}{2} = \frac{5.0}{2} = 2.5 \][/tex]

For the y-coordinate:
[tex]\[ \frac{2.2 + (-4.8)}{2} = \frac{2.2 - 4.8}{2} = \frac{-2.6}{2} = -1.3 \][/tex]

Therefore, the coordinates of the midpoint are [tex]\((2.5, -1.3)\)[/tex].

So, the correct answer is:
B. [tex]\((2.5, -1.3)\)[/tex]